These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33142658)
1. Consolidation of cellulose nanofibrils with lignosulphonate bio-waste into excellent flame retardant and UV blocking membranes. Jančič U; Bračič M; Ojstršek A; Božič M; Mohan T; Gorgieva S Carbohydr Polym; 2021 Jan; 251():117126. PubMed ID: 33142658 [TBL] [Abstract][Full Text] [Related]
2. Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties. Uddin KMA; Ago M; Rojas OJ Carbohydr Polym; 2017 Dec; 177():13-21. PubMed ID: 28962751 [TBL] [Abstract][Full Text] [Related]
3. Ultrastrong and flame-retardant microfibers via microfluidic wet spinning of phosphorylated cellulose nanofibrils. Ren N; Chen S; Cui M; Huang R; Qi W; He Z; Su R Carbohydr Polym; 2022 Nov; 296():119945. PubMed ID: 36087993 [TBL] [Abstract][Full Text] [Related]
4. Natural lignocellulosic biomass structure inspired CNF/Lignin/PBAT composite film with thermoplastic, antibacterial and UV-blocking abilities. Chen J; Chen X; Zhang B; He L; Li X; Li Y; Zhang Z; Zhou Y; Jin W; He X; Liu H Int J Biol Macromol; 2024 Jun; 271(Pt 1):132498. PubMed ID: 38763232 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials. Ghanadpour M; Carosio F; Larsson PT; Wågberg L Biomacromolecules; 2015 Oct; 16(10):3399-410. PubMed ID: 26402379 [TBL] [Abstract][Full Text] [Related]
6. Effects of residual pectin composition and content on the properties of cellulose nanofibrils from ramie fibers. Yu W; Yi Y; Wang H; Yang Y; Xing C; Zeng L; Tang J; Tan Z Carbohydr Polym; 2022 Dec; 298():120112. PubMed ID: 36241286 [TBL] [Abstract][Full Text] [Related]
7. Facile fabrication of cellulose composite films with excellent UV resistance and antibacterial activity. Wang X; Wang S; Liu W; Wang S; Zhang L; Sang R; Hou Q; Li J Carbohydr Polym; 2019 Dec; 225():115213. PubMed ID: 31521302 [TBL] [Abstract][Full Text] [Related]
9. High-Lignin-Containing Cellulose Nanofibrils from Date Palm Waste Produced by Hydrothermal Treatment in the Presence of Maleic Acid. Najahi A; Tarrés Q; Delgado-Aguilar M; Putaux JL; Boufi S Biomacromolecules; 2023 Aug; 24(8):3872-3886. PubMed ID: 37523756 [TBL] [Abstract][Full Text] [Related]
10. Bioinspired multiscale cellulose/lignin-silver composite films with robust mechanical, antioxidant and antibacterial properties for ultraviolet shielding. Wang K; Liu K; Dai L; Si C Int J Biol Macromol; 2024 Feb; 258(Pt 2):129046. PubMed ID: 38154714 [TBL] [Abstract][Full Text] [Related]
11. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents. Lu Y; Tao P; Zhang N; Nie S Carbohydr Polym; 2020 Oct; 245():116463. PubMed ID: 32718602 [TBL] [Abstract][Full Text] [Related]
12. BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles. Wang X; Bian H; Ni S; Sun S; Jiao L; Dai H Int J Biol Macromol; 2020 Aug; 157():259-266. PubMed ID: 32344092 [TBL] [Abstract][Full Text] [Related]
13. Biomass-inspired fabrication of eco-friendly, durable flame retardant and ultraviolet resistant lyocell fabric. Zhao J; Jiang L; Zuo C; Tan W; Ren Y; Liu X Int J Biol Macromol; 2024 Nov; 279(Pt 2):135332. PubMed ID: 39242002 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942 [TBL] [Abstract][Full Text] [Related]
15. Anisotropic composite aerogel with thermal insulation and flame retardancy from cellulose nanofibers, calcium alginate and boric acid. Zhu J; Wang Y; Zhao X; Li N; Guo X; Zhao L; Yin Y Int J Biol Macromol; 2024 May; 267(Pt 1):131450. PubMed ID: 38588838 [TBL] [Abstract][Full Text] [Related]
16. Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance. Bian H; Chen L; Dong M; Wang L; Wang R; Zhou X; Wu C; Wang X; Ji X; Dai H Int J Biol Macromol; 2021 Jan; 166():1578-1585. PubMed ID: 33181218 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable, Flexible and Ultraviolet Blocking Nanocellulose Composite Film Incorporated with Lignin Nanoparticles. Bian H; Shu X; Su W; Luo D; Dong M; Liu X; Ji X; Dai H Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499190 [TBL] [Abstract][Full Text] [Related]
18. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils. H Tayeb A; Tajvidi M; Bousfield D Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070 [TBL] [Abstract][Full Text] [Related]
19. Assembly of AIEgen-Based Fluorescent Metal-Organic Framework Nanosheets and Seaweed Cellulose Nanofibrils for Humidity Sensing and UV-Shielding. Tan F; Zha L; Zhou Q Adv Mater; 2022 Jul; 34(28):e2201470. PubMed ID: 35388558 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency. Xing L; Hu C; Zhang W; Guan L; Gu J Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]