These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33142669)

  • 21. Development of a Virtual Reality Simulator for an Intelligent Robotic System Used in Ankle Rehabilitation.
    Covaciu F; Pisla A; Iordan AE
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot.
    Zou Y; Zhang A; Zhang Q; Zhang B; Wu X; Qin T
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.
    Malosio M; Negri SP; Pedrocchi N; Vicentini F; Caimmi M; Molinari Tosatti L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3356-9. PubMed ID: 23366645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of supervised rehabilitation on strength, postural sway, position sense and re-injury risk after acute ankle ligament sprain.
    Holme E; Magnusson SP; Becher K; Bieler T; Aagaard P; Kjaer M
    Scand J Med Sci Sports; 1999 Apr; 9(2):104-9. PubMed ID: 10220845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reviewing Clinical Effectiveness of Active Training Strategies of Platform-Based Ankle Rehabilitation Robots.
    Zeng X; Zhu G; Zhang M; Xie SQ
    J Healthc Eng; 2018; 2018():2858294. PubMed ID: 29675142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Mechanical Functionality of the EXO-L Ankle Brace: Assessment With a 3-Dimensional Computed Tomography Stress Test.
    Kleipool RP; Natenstedt JJ; Streekstra GJ; Dobbe JG; Gerards RM; Blankevoort L; Tuijthof GJ
    Am J Sports Med; 2016 Jan; 44(1):171-6. PubMed ID: 26589838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Framework for User Adaptation and Profiling for Social Robotics in Rehabilitation.
    Martín A; Pulido JC; González JC; García-Olaya Á; Suárez C
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robot-aided motion planning for knee joint rehabilitation with two robot-manipulators.
    Pei Y; Kim Y; Obinata G; Genda E; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2495-8. PubMed ID: 24110233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of the 2-UPS/RR ankle rehabilitation robot with coupling biomechanical model on muscle behaviors.
    Shengxian Y; Zongxing L; Jing W; Lin G
    Med Biol Eng Comput; 2023 Feb; 61(2):421-434. PubMed ID: 36459326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effectiveness of mobilization with movement at improving dorsiflexion after ankle sprain.
    Hoch MC; McKeon PO
    J Sport Rehabil; 2010 May; 19(2):226-32. PubMed ID: 20543222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wii Fit™ exercise therapy for the rehabilitation of ankle sprains: Its effect compared with physical therapy or no functional exercises at all.
    Punt IM; Ziltener JL; Monnin D; Allet L
    Scand J Med Sci Sports; 2016 Jul; 26(7):816-23. PubMed ID: 26076737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orthopedic rehabilitation using the "Rutgers ankle" interface.
    Girone M; Burdea G; Bouzit M; Popescu V; Deutsch JE
    Stud Health Technol Inform; 2000; 70():89-95. PubMed ID: 10977590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Physical rehabilitation for ankle joint injuries in the elderly and senile (stage 3).].
    Bobunov DN; Korotkova AD; Beketova EA; Laidinen AV; Koiro V; Zagrebailo AZ; Protsenko AR; Zaitsev EA
    Adv Gerontol; 2023; 36(5):704-713. PubMed ID: 38180370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
    Jamwal PK; Hussain S; Mir-Nasiri N; Ghayesh MH; Xie SQ
    Assist Technol; 2018; 30(1):24-33. PubMed ID: 27658061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, characterisation and evaluation of a soft robotic sock device on healthy subjects for assisted ankle rehabilitation.
    Low FZ; Lim JH; Yeow CH
    J Med Eng Technol; 2018 Jan; 42(1):26-34. PubMed ID: 29256765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gamification and Control of Nitinol Based Ankle Rehabilitation Robot.
    Hau CT; Gouwanda D; Gopalai AA; Low CY; Hanapiah FA
    Biomimetics (Basel); 2021 Sep; 6(3):. PubMed ID: 34562877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Initial changes in posterior talar glide and dorsiflexion of the ankle after mobilization with movement in individuals with recurrent ankle sprain.
    Vicenzino B; Branjerdporn M; Teys P; Jordan K
    J Orthop Sports Phys Ther; 2006 Jul; 36(7):464-71. PubMed ID: 16881463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Balance- and Strength-Training Protocols to Improve Chronic Ankle Instability Deficits, Part I: Assessing Clinical Outcome Measures.
    Hall EA; Chomistek AK; Kingma JJ; Docherty CL
    J Athl Train; 2018 Jun; 53(6):568-577. PubMed ID: 29975573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.