These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33142754)

  • 21. Assessment of ligand-binding residue predictions in CASP9.
    Schmidt T; Haas J; Gallo Cassarino T; Schwede T
    Proteins; 2011; 79 Suppl 10(Suppl 10):126-36. PubMed ID: 21987472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-organizing fuzzy graphs for structure-based comparison of protein pockets.
    Reisen F; Weisel M; Kriegl JM; Schneider G
    J Proteome Res; 2010 Dec; 9(12):6498-510. PubMed ID: 20883038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Knowledge-based scoring functions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding potential for the prediction of protein-ligand interactions.
    Zheng M; Xiong B; Luo C; Li S; Liu X; Shen Q; Li J; Zhu W; Luo X; Jiang H
    J Chem Inf Model; 2011 Nov; 51(11):2994-3004. PubMed ID: 21999432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new test set for validating predictions of protein-ligand interaction.
    Nissink JW; Murray C; Hartshorn M; Verdonk ML; Cole JC; Taylor R
    Proteins; 2002 Dec; 49(4):457-71. PubMed ID: 12402356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A chemogenomics view on protein-ligand spaces.
    Strömbergsson H; Kleywegt GJ
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S13. PubMed ID: 19534738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MetaPocket: a meta approach to improve protein ligand binding site prediction.
    Huang B
    OMICS; 2009 Aug; 13(4):325-30. PubMed ID: 19645590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015.
    Kumar A; Zhang KY
    J Comput Aided Mol Des; 2016 Sep; 30(9):685-693. PubMed ID: 27484214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures.
    Greenside P; Hillenmeyer M; Kundaje A
    Pac Symp Biocomput; 2018; 23():20-31. PubMed ID: 29218866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI.
    Wiehe K; Pierce B; Tong WW; Hwang H; Mintseris J; Weng Z
    Proteins; 2007 Dec; 69(4):719-25. PubMed ID: 17803212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12.
    Haas J; Barbato A; Behringer D; Studer G; Roth S; Bertoni M; Mostaguir K; Gumienny R; Schwede T
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):387-398. PubMed ID: 29178137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pocketome via comprehensive identification and classification of ligand binding envelopes.
    An J; Totrov M; Abagyan R
    Mol Cell Proteomics; 2005 Jun; 4(6):752-61. PubMed ID: 15757999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GalaxySagittarius: Structure- and Similarity-Based Prediction of Protein Targets for Druglike Compounds.
    Yang J; Kwon S; Bae SH; Park KM; Yoon C; Lee JH; Seok C
    J Chem Inf Model; 2020 Jun; 60(6):3246-3254. PubMed ID: 32401021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.
    Lee HS; Im W
    Methods Mol Biol; 2017; 1611():97-108. PubMed ID: 28451974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of sub-cavity binding preferences using an adaptive physicochemical structure representation.
    Wallach I; Lilien RH
    Bioinformatics; 2009 Jun; 25(12):i296-304. PubMed ID: 19478002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting protein-ligand binding sites based on an improved geometric algorithm.
    He J; Wei DQ; Wang JF; Chou KC
    Protein Pept Lett; 2011 Oct; 18(10):997-1001. PubMed ID: 21592081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for predicting protein-ligand binding sites.
    Xie ZR; Hwang MJ
    Methods Mol Biol; 2015; 1215():383-98. PubMed ID: 25330972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface-based multimodal protein-ligand binding affinity prediction.
    Xu S; Shen L; Zhang M; Jiang C; Zhang X; Xu Y; Liu J; Liu X
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38905501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of automatic ligand building in ARP/wARP.
    Evrard GX; Langer GG; Perrakis A; Lamzin VS
    Acta Crystallogr D Biol Crystallogr; 2007 Jan; 63(Pt 1):108-17. PubMed ID: 17164533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.