These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33142877)

  • 1. Temperature Correction to Enhance Blood Glucose Monitoring Accuracy Using Electrical Impedance Spectroscopy.
    Lee YS; Son M; Zhbanov A; Jung Y; Jung MH; Eom K; Nam SH; Park J; Yang S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical Model for Blood Glucose Detection Using Electrical Impedance Spectroscopy.
    Pedro BG; Marcôndes DWC; Bertemes-Filho P
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The compensation of perturbing temperature fluctuation in glucose monitoring technologies based on impedance spectroscopy.
    Huber D; Talary M; Dewarrat F; Caduff A
    Med Biol Eng Comput; 2007 Sep; 45(9):863-76. PubMed ID: 17661101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing subject dependencies on Non-Invasive Blood Glucose Measurement using Hybrid Techniques.
    Pathirage KD; Roopasinghe P; Sooriyaarachchi JJ; Weththasinghe R; Nanayakkara ND
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7197-7200. PubMed ID: 31947495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear relationship between cytoplasm resistance and hemoglobin in red blood cell hemolysis by electrical impedance spectroscopy & eight-parameter equivalent circuit.
    Tran AK; Sapkota A; Wen J; Li J; Takei M
    Biosens Bioelectron; 2018 Nov; 119():103-109. PubMed ID: 30118948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The correlation of the complex dielectric constant and blood glucose at low frequency.
    Park JH; Kim CS; Choi BC; Ham KY
    Biosens Bioelectron; 2003 Dec; 19(4):321-4. PubMed ID: 14615089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The promise of electrochemical impedance spectroscopy as novel technology for the management of patients with diabetes mellitus.
    Adamson TL; Eusebio FA; Cook CB; LaBelle JT
    Analyst; 2012 Sep; 137(18):4179-87. PubMed ID: 22842610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lead exposure on blood electrical impedance spectroscopy of mice.
    Yang B; Xu J; Hu S; You B; Ma Q
    Biomed Eng Online; 2021 Oct; 20(1):99. PubMed ID: 34620171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A battery-less implantable glucose sensor based on electrical impedance spectroscopy.
    Ollmar S; Fernandez Schrunder A; Birgersson U; Kristoffersson T; Rusu A; Thorsson E; Hedenqvist P; Manell E; Rydén A; Jensen-Waern M; Rodriguez S
    Sci Rep; 2023 Oct; 13(1):18122. PubMed ID: 37872272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance spectroscopy of solutions at physiological glucose concentrations.
    Tura A; Sbrignadello S; Barison S; Conti S; Pacini G
    Biophys Chem; 2007 Sep; 129(2-3):235-41. PubMed ID: 17602824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electrical impedance spectroscopy for evaluation of the influence of simulated weightlessness on the electrical properties of rat blood].
    Gong Y; Chen L; Shen B; Ma Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):653-7, 662. PubMed ID: 23016410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes.
    Daikuzono CM; Delaney C; Tesfay H; Florea L; Oliveira ON; Morrin A; Diamond D
    Analyst; 2017 Mar; 142(7):1133-1139. PubMed ID: 28300229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data processing for noninvasive continuous glucose monitoring with a multisensor device.
    Mueller M; Talary MS; Falco L; De Feo O; Stahel WA; Caduff A
    J Diabetes Sci Technol; 2011 May; 5(3):694-702. PubMed ID: 21722585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive glucose monitoring in patients with diabetes: a novel system based on impedance spectroscopy.
    Caduff A; Dewarrat F; Talary M; Stalder G; Heinemann L; Feldman Y
    Biosens Bioelectron; 2006 Dec; 22(5):598-604. PubMed ID: 16524714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cells aggregability measurement of coagulating blood in extracorporeal circulation system with multiple-frequency electrical impedance spectroscopy.
    Li J; Sapkota A; Kikuchi D; Sakota D; Maruyama O; Takei M
    Biosens Bioelectron; 2018 Jul; 112():79-85. PubMed ID: 29698811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially resolved electrical impedance methods for cell and particle characterization.
    Schwarz M; Jendrusch M; Constantinou I
    Electrophoresis; 2020 Jan; 41(1-2):65-80. PubMed ID: 31663624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Impedance Characterization of Blood Cell Suspensions-Part 2: Three-Phase Systems With Single-Shelled Particles.
    Zhbanov A; Yang S
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2979-2989. PubMed ID: 32091989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of healthy and cancerous breast cells: Sensing the differences by dielectric spectroscopy.
    Ambrico M; Lasalvia M; Ligonzo T; Ambrico PF; Perna G; Capozzi V
    Med Phys; 2020 Oct; 47(10):5373-5382. PubMed ID: 32750750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.