BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

760 related articles for article (PubMed ID: 33142884)

  • 1. In Vivo Imaging with Genetically Encoded Redox Biosensors.
    Kostyuk AI; Panova AS; Kokova AD; Kotova DA; Maltsev DI; Podgorny OV; Belousov VV; Bilan DS
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors.
    Zou Y; Wang A; Shi M; Chen X; Liu R; Li T; Zhang C; Zhang Z; Zhu L; Ju Z; Loscalzo J; Yang Y; Zhao Y
    Nat Protoc; 2018 Oct; 13(10):2362-2386. PubMed ID: 30258175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New tools for redox biology: From imaging to manipulation.
    Bilan DS; Belousov VV
    Free Radic Biol Med; 2017 Aug; 109():167-188. PubMed ID: 27939954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells.
    Fernández-Puente E; Palomero J
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lighting the light reactions of photosynthesis by means of redox-responsive genetically encoded biosensors for photosynthetic intermediates.
    Molinari PE; Krapp AR; Zurbriggen MD; Carrillo N
    Photochem Photobiol Sci; 2023 Aug; 22(8):2005-2018. PubMed ID: 37195389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.
    Zhao Y; Zhang Z; Zou Y; Yang Y
    Antioxid Redox Signal; 2018 Jan; 28(3):213-229. PubMed ID: 28648094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria.
    Tung QN; Linzner N; Loi VV; Antelmann H
    Free Radic Biol Med; 2018 Nov; 128():84-96. PubMed ID: 29454879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state.
    Banach-Latapy A; He T; Dardalhon M; Vernis L; Chanet R; Huang ME
    Free Radic Biol Med; 2013 Dec; 65():436-445. PubMed ID: 23891676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modern optical approaches in redox biology: Genetically encoded sensors and Raman spectroscopy.
    Kostyuk AI; Rapota DD; Morozova KI; Fedotova AA; Jappy D; Semyanov AV; Belousov VV; Brazhe NA; Bilan DS
    Free Radic Biol Med; 2024 May; 217():68-115. PubMed ID: 38508405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Genetically Encoded Fluorescent Redox Sensors].
    Bilan DS; Lukyanov SA; Belousov VV
    Bioorg Khim; 2015; 41(3):259-74. PubMed ID: 26502603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically encoded redox sensors.
    Chiu WK; Towheed A; Palladino MJ
    Methods Enzymol; 2014; 542():263-87. PubMed ID: 24862271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans.
    Braeckman BP; Smolders A; Back P; De Henau S
    Antioxid Redox Signal; 2016 Oct; 25(10):577-92. PubMed ID: 27306519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A redox-sensitive yellow fluorescent protein sensor for monitoring nuclear glutathione redox dynamics.
    Banach-Latapy A; Dardalhon M; Huang ME
    Methods Mol Biol; 2015; 1228():159-69. PubMed ID: 25311129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans.
    Back P; De Vos WH; Depuydt GG; Matthijssens F; Vanfleteren JR; Braeckman BP
    Free Radic Biol Med; 2012 Mar; 52(5):850-9. PubMed ID: 22226831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors.
    Zhang C; Wei ZH; Ye BC
    Biotechnol J; 2013 Nov; 8(11):1280-91. PubMed ID: 24591186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor.
    Hung YP; Yellen G
    Methods Mol Biol; 2014; 1071():83-95. PubMed ID: 24052382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress.
    Wages PA; Cheng WY; Gibbs-Flournoy E; Samet JM
    Biochim Biophys Acta; 2016 Dec; 1860(12):2802-15. PubMed ID: 27208426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically Encoded Biosensors in Plants: Pathways to Discovery.
    Walia A; Waadt R; Jones AM
    Annu Rev Plant Biol; 2018 Apr; 69():497-524. PubMed ID: 29719164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiparameter in vivo imaging in plants using genetically encoded fluorescent indicator multiplexing.
    Waadt R; Kudla J; Kollist H
    Plant Physiol; 2021 Oct; 187(2):537-549. PubMed ID: 35237819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox imaging using genetically encoded redox indicators in zebrafish and mice.
    Breckwoldt MO; Wittmann C; Misgeld T; Kerschensteiner M; Grabher C
    Biol Chem; 2015 May; 396(5):511-22. PubMed ID: 25720068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.