These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

764 related articles for article (PubMed ID: 33142884)

  • 1. In Vivo Imaging with Genetically Encoded Redox Biosensors.
    Kostyuk AI; Panova AS; Kokova AD; Kotova DA; Maltsev DI; Podgorny OV; Belousov VV; Bilan DS
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A guide to genetically-encoded redox biosensors: State of the art and opportunities.
    Pedre B
    Arch Biochem Biophys; 2024 Aug; 758():110067. PubMed ID: 38908743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors.
    Zou Y; Wang A; Shi M; Chen X; Liu R; Li T; Zhang C; Zhang Z; Zhu L; Ju Z; Loscalzo J; Yang Y; Zhao Y
    Nat Protoc; 2018 Oct; 13(10):2362-2386. PubMed ID: 30258175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New tools for redox biology: From imaging to manipulation.
    Bilan DS; Belousov VV
    Free Radic Biol Med; 2017 Aug; 109():167-188. PubMed ID: 27939954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells.
    Fernández-Puente E; Palomero J
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lighting the light reactions of photosynthesis by means of redox-responsive genetically encoded biosensors for photosynthetic intermediates.
    Molinari PE; Krapp AR; Zurbriggen MD; Carrillo N
    Photochem Photobiol Sci; 2023 Aug; 22(8):2005-2018. PubMed ID: 37195389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.
    Zhao Y; Zhang Z; Zou Y; Yang Y
    Antioxid Redox Signal; 2018 Jan; 28(3):213-229. PubMed ID: 28648094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria.
    Tung QN; Linzner N; Loi VV; Antelmann H
    Free Radic Biol Med; 2018 Nov; 128():84-96. PubMed ID: 29454879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state.
    Banach-Latapy A; He T; Dardalhon M; Vernis L; Chanet R; Huang ME
    Free Radic Biol Med; 2013 Dec; 65():436-445. PubMed ID: 23891676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modern optical approaches in redox biology: Genetically encoded sensors and Raman spectroscopy.
    Kostyuk AI; Rapota DD; Morozova KI; Fedotova AA; Jappy D; Semyanov AV; Belousov VV; Brazhe NA; Bilan DS
    Free Radic Biol Med; 2024 May; 217():68-115. PubMed ID: 38508405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Genetically Encoded Fluorescent Redox Sensors].
    Bilan DS; Lukyanov SA; Belousov VV
    Bioorg Khim; 2015; 41(3):259-74. PubMed ID: 26502603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically encoded redox sensors.
    Chiu WK; Towheed A; Palladino MJ
    Methods Enzymol; 2014; 542():263-87. PubMed ID: 24862271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans.
    Braeckman BP; Smolders A; Back P; De Henau S
    Antioxid Redox Signal; 2016 Oct; 25(10):577-92. PubMed ID: 27306519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A redox-sensitive yellow fluorescent protein sensor for monitoring nuclear glutathione redox dynamics.
    Banach-Latapy A; Dardalhon M; Huang ME
    Methods Mol Biol; 2015; 1228():159-69. PubMed ID: 25311129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans.
    Back P; De Vos WH; Depuydt GG; Matthijssens F; Vanfleteren JR; Braeckman BP
    Free Radic Biol Med; 2012 Mar; 52(5):850-9. PubMed ID: 22226831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors.
    Zhang C; Wei ZH; Ye BC
    Biotechnol J; 2013 Nov; 8(11):1280-91. PubMed ID: 24591186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor.
    Hung YP; Yellen G
    Methods Mol Biol; 2014; 1071():83-95. PubMed ID: 24052382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress.
    Wages PA; Cheng WY; Gibbs-Flournoy E; Samet JM
    Biochim Biophys Acta; 2016 Dec; 1860(12):2802-15. PubMed ID: 27208426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically Encoded Biosensors in Plants: Pathways to Discovery.
    Walia A; Waadt R; Jones AM
    Annu Rev Plant Biol; 2018 Apr; 69():497-524. PubMed ID: 29719164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparameter in vivo imaging in plants using genetically encoded fluorescent indicator multiplexing.
    Waadt R; Kudla J; Kollist H
    Plant Physiol; 2021 Oct; 187(2):537-549. PubMed ID: 35237819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.