These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 33142959)
1. Evaluation of Sterilization/Disinfection Methods of Fibrous Polyurethane Scaffolds Designed for Tissue Engineering Applications. Łopianiak I; Butruk-Raszeja BA Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142959 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Chan JP; Battiston KG; Santerre JP Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683 [TBL] [Abstract][Full Text] [Related]
3. Exploiting novel sterilization techniques for porous polyurethane scaffolds. Bertoldi S; Farè S; Haugen HJ; Tanzi MC J Mater Sci Mater Med; 2015 May; 26(5):182. PubMed ID: 25893387 [TBL] [Abstract][Full Text] [Related]
4. Superhydrophilic Polyurethane/Polydopamine Nanofibrous Materials Enhancing Cell Adhesion for Application in Tissue Engineering. Kopeć K; Wojasiński M; Ciach T Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947971 [TBL] [Abstract][Full Text] [Related]
5. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. Asefnejad A; Khorasani MT; Behnamghader A; Farsadzadeh B; Bonakdar S Int J Nanomedicine; 2011; 6():2375-84. PubMed ID: 22072874 [TBL] [Abstract][Full Text] [Related]
6. Impact of sterilization by electron beam, gamma radiation and X-rays on electrospun poly-(ε-caprolactone) fiber mats. de Cassan D; Hoheisel AL; Glasmacher B; Menzel H J Mater Sci Mater Med; 2019 Mar; 30(4):42. PubMed ID: 30919082 [TBL] [Abstract][Full Text] [Related]
7. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Holy CE; Cheng C; Davies JE; Shoichet MS Biomaterials; 2001 Jan; 22(1):25-31. PubMed ID: 11085380 [TBL] [Abstract][Full Text] [Related]
8. Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds. Andrews KD; Hunt JA; Black RA Biomaterials; 2007 Feb; 28(6):1014-26. PubMed ID: 17125831 [TBL] [Abstract][Full Text] [Related]
9. Developing biodegradable scaffolds for tissue engineering of the urethra. Selim M; Bullock AJ; Blackwood KA; Chapple CR; MacNeil S BJU Int; 2011 Jan; 107(2):296-302. PubMed ID: 20477828 [TBL] [Abstract][Full Text] [Related]
10. Hydrogels based on poly(ethylene glycol) as scaffolds for tissue engineering application: biocompatibility assessment and effect of the sterilization process. Escudero-Castellanos A; Ocampo-García BE; Domínguez-García MV; Flores-Estrada J; Flores-Merino MV J Mater Sci Mater Med; 2016 Dec; 27(12):176. PubMed ID: 27752974 [TBL] [Abstract][Full Text] [Related]
11. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Hofmann S; Stok KS; Kohler T; Meinel AJ; Müller R Acta Biomater; 2014 Jan; 10(1):308-17. PubMed ID: 24013025 [TBL] [Abstract][Full Text] [Related]
12. Effect of fiber orientation of collagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications. Full SM; Delman C; Gluck JM; Abdmaulen R; Shemin RJ; Heydarkhan-Hagvall S J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):39-46. PubMed ID: 24757041 [TBL] [Abstract][Full Text] [Related]
13. The mechanically enhanced phase separation of sprayed polyurethane scaffolds and their effect on the alignment of fibroblasts. Kennedy JP; McCandless SP; Lasher RA; Hitchcock RW Biomaterials; 2010 Feb; 31(6):1126-32. PubMed ID: 19878993 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. Wang H; Feng Y; An B; Zhang W; Sun M; Fang Z; Yuan W; Khan M J Mater Sci Mater Med; 2012 Jun; 23(6):1499-510. PubMed ID: 22430593 [TBL] [Abstract][Full Text] [Related]
15. Fabrication, characterization, and in vitro evaluation of electrospun polyurethane-gelatin-carbon nanotube scaffolds for cardiovascular tissue engineering applications. Tondnevis F; Keshvari H; Mohandesi JA J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2276-2293. PubMed ID: 31967388 [TBL] [Abstract][Full Text] [Related]
16. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications. Milleret V; Simona B; Neuenschwander P; Hall H Eur Cell Mater; 2011 Mar; 21():286-303. PubMed ID: 21432783 [TBL] [Abstract][Full Text] [Related]
17. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility. De Nardo L; Alberti R; Cigada A; Yahia L; Tanzi MC; Farè S Acta Biomater; 2009 Jun; 5(5):1508-18. PubMed ID: 19136318 [TBL] [Abstract][Full Text] [Related]
18. The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process. Wu H; Shang Y; Zhang J; Cheang LH; Zeng X; Tu M J Biomater Appl; 2017 Oct; 32(4):492-503. PubMed ID: 28992805 [TBL] [Abstract][Full Text] [Related]
19. Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications. Ji C; Shi J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3780-5. PubMed ID: 23910277 [TBL] [Abstract][Full Text] [Related]
20. Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels. Rizwan M; Chan SW; Comeau PA; Willett TL; Yim EKF Biomed Mater; 2020 Oct; 15(6):065017. PubMed ID: 32640427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]