These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33143220)

  • 1. Kinematic ME-MAFA for Pseudolite Carrier-Phase Ambiguity Resolution in Precise Single-Point Positioning.
    Liu K; Guo X; Yang J; Li X; Liu C; Tang Y; Meng Z; Yan E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Method for Single-Epoch Ambiguity Resolution with Indoor Pseudolite Positioning.
    Li X; Zhang P; Guo J; Wang J; Qiu W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28430146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Method of High-Precision Positioning for an Indoor Pseudolite without Using the Known Point Initialization.
    Zhao Y; Zhang P; Guo J; Li X; Wang J; Yang F; Wang X
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29925816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doppler Differential Positioning Technology Using the BDS/GPS Indoor Array Pseudolite System.
    Gan X; Yu B; Huang L; Jia R; Zhang H; Sheng C; Fan G; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliable Indoor Pseudolite Positioning Based on a Robust Estimation and Partial Ambiguity Resolution Method.
    Li X; Huang G; Zhang P; Zhang Q
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise Point Positioning Algorithm for Pseudolite Combined with GNSS in a Constrained Observation Environment.
    Sheng C; Gan X; Yu B; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Innovative Fingerprint Location Algorithm for Indoor Positioning Based on Array Pseudolite.
    Huang L; Gan X; Yu B; Zhang H; Li S; Cheng J; Liang X; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments.
    Zhu R; Wang Y; Cao H; Yu B; Gan X; Huang L; Zhang H; Li S; Jia H; Chen J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved Ambiguity Resolution Algorithm for Smartphone RTK Positioning.
    Jiang Y; Gao Y; Ding W; Liu F; Gao Y
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Ambiguity-Free Method for Precise GNSS Positioning with Utilizing Single Frequency Receivers.
    Yang W; Liu Y; Liu F
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Point Positioning with Partial Ambiguity Fixing.
    Li P; Zhang X
    Sensors (Basel); 2015 Jun; 15(6):13627-43. PubMed ID: 26067196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambiguity of Residual Constraint-Based Precise Point Positioning with Partial Ambiguity Resolution under No Real-Time Network Corrections Using Real Global Positioning System (GPS) Data.
    Qin H; Liu P; Cong L; Xue X
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Tightly Coupled RTK/INS Algorithm with Ambiguity Resolution in the Position Domain for Ground Vehicles in Harsh Urban Environments.
    Li W; Li W; Cui X; Zhao S; Lu M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29973573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A performance improvement method for low-cost land vehicle GPS/MEMS-INS attitude determination.
    Cong L; Li E; Qin H; Ling KV; Xue R
    Sensors (Basel); 2015 Mar; 15(3):5722-46. PubMed ID: 25760057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance improvement for GPS single frequency kinematic relative positioning under poor satellite visibility.
    Chen W
    Springerplus; 2016; 5():574. PubMed ID: 27247871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter.
    Han H; Xu T; Wang J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization.
    Fujii K; Sakamoto Y; Wang W; Arie H; Schmitz A; Sugano S
    Sensors (Basel); 2015 Sep; 15(10):25157-75. PubMed ID: 26437405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier loop with multi-pulse coherent integration for tracking pulsed pseudolite signal.
    Liu K; Ouyang R; Hu M; Guo X; Yang J
    Rev Sci Instrum; 2022 Dec; 93(12):125005. PubMed ID: 36586938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Partial Carrier Phase Integer Ambiguity Fixing Algorithm for Combinatorial Optimization between Network RTK Reference Stations.
    Wang S; You Z; Sun X
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.
    Li T; Zhang H; Niu X; Gao Z
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29077070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.