BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33143314)

  • 1. High Silica Content Graphene/Natural Rubber Composites Prepared by a Wet Compounding and Latex Mixing Process.
    Wang J; Zhang K; Fei G; Salzano de Luna M; Lavorgna M; Xia H
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33143314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Natural Rubber Composites with High Silica Contents Using a Wet Mixing Process.
    Phumnok E; Khongprom P; Ratanawilai S
    ACS Omega; 2022 Mar; 7(10):8364-8376. PubMed ID: 35309431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silica Modified by Alcohol Polyoxyethylene Ether and Silane Coupling Agent Together to Achieve High Performance Rubber Composites Using the Latex Compounding Method.
    Zheng J; Ye X; Han D; Zhao S; Wu X; Wu Y; Dong D; Wang Y; Zhang L
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Solvent-Latex Mixing: Thermal Insulation Performance of Silica Aerogel/Natural Rubber Composite.
    Boonrawd C; Yodyingyong S; Benyahia L; Triampo D
    Gels; 2021 Dec; 8(1):. PubMed ID: 35049542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFD simulation of silica dispersion/natural rubber latex mixing for high silica content rubber composite production.
    Phumnok E; Saetiao P; Bumphenkiattikul P; Rattanawilai S; Khongprom P
    RSC Adv; 2024 Apr; 14(18):12612-12623. PubMed ID: 38638820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High performance graphene oxide based rubber composites.
    Mao Y; Wen S; Chen Y; Zhang F; Panine P; Chan TW; Zhang L; Liang Y; Liu L
    Sci Rep; 2013; 3():2508. PubMed ID: 23974435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Reduced Graphene Oxide in Enhancing the Mechanical and Thermal Properties of a Rubber Cover Joint.
    Zhang H; Li J; Fan W
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing Chemical Interface Layers by Using Ionic Liquid in Graphene Oxide/Rubber Composites to Achieve High-Wear Resistance in Environmental-Friendly Green Tires.
    Chu L; Kan M; Jerrams S; Zhang R; Xu Z; Liu L; Wen S; Zhang L
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5995-6004. PubMed ID: 35040636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Different Silane Coupling Agents In-Situ Modified Sepiolite on the Structure and Properties of Natural Rubber Composites Prepared by Latex Compounding Method.
    Hou Z; Zhou D; Chen Q; Xin Z
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silanized Silica-Encapsulated Calcium Carbonate@Natural Rubber Composites Prepared by One-Pot Reaction.
    Yu Y; Zhang J; Wang H; Xin Z
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33198104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid formation of carbon nanotubes-natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration.
    Promsung R; Chuaybamrung A; Georgopoulou A; Clemens F; Nakaramontri Y; Johns J; Lehman N; Songtipya L; Kalkornsurapranee E
    Discov Nano; 2024 Feb; 19(1):30. PubMed ID: 38372836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction.
    Pham VH; Dang TT; Hur SH; Kim EJ; Chung JS
    ACS Appl Mater Interfaces; 2012 May; 4(5):2630-6. PubMed ID: 22512434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold.
    Tian M; Zhang J; Zhang L; Liu S; Zan X; Nishi T; Ning N
    J Colloid Interface Sci; 2014 Sep; 430():249-56. PubMed ID: 24972295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Poly(acrylic acid-
    Inphonlek S; Bureewong N; Jarukumjorn K; Chumsamrong P; Ruksakulpiwat C; Ruksakulpiwat Y
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization.
    Peng Z; Kong LX; Li SD; Chen Y; Huang MF
    Compos Sci Technol; 2007 Dec; 67(15):3130-3139. PubMed ID: 32287828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ESBR Nanocomposites Filled with Monodisperse Silica Modified with Si747: The Effects of Amount and pH on Performance.
    Xia L; Tao A; Cui J; Sun A; Kan Z; Liu S
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement in antimicrobial efficacy and biodegradation of natural rubber latex through graphene oxide/nickel oxide nanoparticles.
    Verma A; Arora S
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):131046. PubMed ID: 38518945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titanium carbide ceramic nanocrystals to enhance the physicochemical properties of natural rubber composites.
    Jayasinghe JMARB; De Silva RT; de Silva KMN; de Silva RM; Silva VA
    RSC Adv; 2020 May; 10(33):19290-19299. PubMed ID: 35515424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Investigation of Nano-Sized Silica and Micrometer-Sized Calcium Carbonate on Structure and Properties of Natural Rubber Composites.
    Hayeemasae N; Soontaranon S; Masa A
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of Self-Healing Butyl Rubber and Natural Rubber Composites for Improving the Stability.
    Chumnum K; Kalkornsurapranee E; Johns J; Sengloyluan K; Nakaramontri Y
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33573166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.