BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33143454)

  • 1. Segmentation of Temporal Bone Anatomy for Patient-Specific Virtual Reality Simulation.
    Andersen SAW; Bergman M; Keith JP; Powell KA; Hittle B; Malhotra P; Wiet GJ
    Ann Otol Rhinol Laryngol; 2021 Jul; 130(7):724-730. PubMed ID: 33143454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-atlas segmentation of the facial nerve from clinical CT for virtual reality simulators.
    Gare BM; Hudson T; Rohani SA; Allen DG; Agrawal SK; Ladak HM
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):259-267. PubMed ID: 31760585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomy-Specific Virtual Reality Simulation in Temporal Bone Dissection: Perceived Utility and Impact on Surgeon Confidence.
    Locketz GD; Lui JT; Chan S; Salisbury K; Dort JC; Youngblood P; Blevins NH
    Otolaryngol Head Neck Surg; 2017 Jun; 156(6):1142-1149. PubMed ID: 28322125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-specific virtual and mixed reality for immersive, experiential anatomy education and for surgical planning in temporal bone surgery.
    Yamazaki A; Ito T; Sugimoto M; Yoshida S; Honda K; Kawashima Y; Fujikawa T; Fujii Y; Tsutsumi T
    Auris Nasus Larynx; 2021 Dec; 48(6):1081-1091. PubMed ID: 34059399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-specific Virtual Temporal Bone Simulation Based on Clinical Cone-beam Computed Tomography.
    Andersen SAW; Varadarajan VV; Moberly AC; Hittle B; Powell KA; Wiet GJ
    Laryngoscope; 2021 Aug; 131(8):1855-1862. PubMed ID: 33780005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atlas-based segmentation of temporal bone surface structures.
    Powell KA; Kashikar T; Hittle B; Stredney D; Kerwin T; Wiet GJ
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1267-1273. PubMed ID: 31025245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pipeline for Automated Processing of Clinical Cone-Beam Computed Tomography for Patient-Specific Temporal Bone Simulation: Validation and Clinical Feasibility.
    Andersen SAW; Hittle B; Keith JP; Powell KA; Wiet GJ
    Otol Neurotol; 2023 Feb; 44(2):e88-e94. PubMed ID: 36624596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atlas-based segmentation of cochlear microstructures in cone beam CT.
    Powell KA; Wiet GJ; Hittle B; Oswald GI; Keith JP; Stredney D; Andersen SAW
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):363-373. PubMed ID: 33580852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atlas-Based Segmentation of Temporal Bone Anatomy.
    Powell KA; Liang T; Hittle B; Stredney D; Kerwin T; Wiet GJ
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1937-1944. PubMed ID: 28852952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery.
    Ding AS; Lu A; Li Z; Galaiya D; Siewerdsen JH; Taylor RH; Creighton FX
    Otolaryngol Head Neck Surg; 2022 Jul; 167(1):133-140. PubMed ID: 34491849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OpenEar Image Data Enables Case Variation in High Fidelity Virtual Reality Ear Surgery.
    Sieber DM; Andersen SAW; Sørensen MS; Mikkelsen PT
    Otol Neurotol; 2021 Sep; 42(8):1245-1252. PubMed ID: 33883519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further Validity Evidence for Patient-Specific Virtual Reality Temporal Bone Surgical Simulation.
    Andersen SAW; Hittle B; Värendh M; Lee J; Varadarajan V; Powell KA; Wiet GJ
    Laryngoscope; 2024 Mar; 134(3):1403-1409. PubMed ID: 37650640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation.
    Arora A; Swords C; Khemani S; Awad Z; Darzi A; Singh A; Tolley N
    Int J Surg; 2014; 12(2):141-5. PubMed ID: 24316389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comprehensive literature review on the application of the otological-surgical planning software OTOPLAN® for cochlear implantation. German version].
    Müller-Graff FT; Spahn B; Herrmann DP; Kurz A; Voelker J; Hagen R; Rak K
    HNO; 2024 Apr; ():. PubMed ID: 38587661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive literature review on the application of the otological surgical planning software OTOPLAN® for cochlear implantation.
    Müller-Graff FT; Spahn B; Herrmann DP; Kurz A; Völker J; Hagen R; Rak K
    HNO; 2024 Jun; ():. PubMed ID: 38861031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of virtual reality on temporal bone anatomy evaluation and performance.
    Timonen T; Dietz A; Linder P; Lehtimäki A; Löppönen H; Elomaa AP; Iso-Mustajärvi M
    Eur Arch Otorhinolaryngol; 2022 Sep; 279(9):4303-4312. PubMed ID: 34837519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Software Tools for Segmentation of Temporal Bone Anatomy.
    Hassan K; Dort JC; Sutherland GR; Chan S
    Stud Health Technol Inform; 2016; 220():130-3. PubMed ID: 27046565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study.
    Wang J; Lv Y; Wang J; Ma F; Du Y; Fan X; Wang M; Ke J
    BMC Med Imaging; 2021 Nov; 21(1):166. PubMed ID: 34753454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging.
    Ding AS; Lu A; Li Z; Sahu M; Galaiya D; Siewerdsen JH; Unberath M; Taylor RH; Creighton FX
    Otolaryngol Head Neck Surg; 2023 Oct; 169(4):988-998. PubMed ID: 36883992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated preoperative segmentation of temporal bone structures from clinical CT scans.
    Neves CA; Tran ED; Kessler IM; Blevins NH
    Sci Rep; 2021 Jan; 11(1):116. PubMed ID: 33420386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.