These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33143572)

  • 1. Kinetic and kinematic determinants of female sprint performance.
    Gleadhill S; Nagahara R
    J Sports Sci; 2021 Mar; 39(6):609-617. PubMed ID: 33143572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of spatiotemporal and ground reaction force variables during decelerated sprinting.
    Nagahara R; Girard O
    Scand J Med Sci Sports; 2021 Mar; 31(3):586-596. PubMed ID: 33217086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and kinematic synchronization between blind and guide sprinters.
    Nagahara R
    J Sports Sci; 2021 Jul; 39(14):1661-1668. PubMed ID: 33622181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J
    Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Sports Sci; 2018 Jun; 36(12):1392-1401. PubMed ID: 28988513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normative spatiotemporal and ground reaction force data for female and male sprinting.
    Nagahara R
    J Sports Sci; 2023 Jun; 41(12):1240-1249. PubMed ID: 37805986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of kinematics and kinetics between unassisted and assisted maximum speed sprinting.
    Gleadhill S; Jiménez-Reyes P; van den Tillaar R; Nagahara R
    J Sports Sci; 2023 Dec; 41(24):2169-2175. PubMed ID: 38389310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and kinematic characteristics of sprint running with a weighted vest.
    Gleadhill S; Yuki N; Wada T; Nagahara R
    J Biomech; 2021 Sep; 126():110655. PubMed ID: 34358902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First and Second Step Characteristics of Amputee and Able-Bodied Sprinters.
    Strutzenberger G; Brazil A; Exell T; von Lieres Und Wilkau H; Davies JD; Willwacher S; Funken J; Müller R; Heinrich K; Schwameder H; Potthast W; Irwin G
    Int J Sports Physiol Perform; 2018 Aug; 13(7):874-881. PubMed ID: 29252086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are peak ground reaction forces related to better sprint acceleration performance?
    Nagahara R; Kanehisa H; Matsuo A; Fukunaga T
    Sports Biomech; 2021 Apr; 20(3):360-369. PubMed ID: 30676878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute effects of caffeine supplementation on kinematics and kinetics of sprinting.
    Horiuchi M; Nagahara R
    Scand J Med Sci Sports; 2024 Mar; 34(3):e14595. PubMed ID: 38458991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetries of kinematics and kinetics in female and male sprinting.
    Nagahara R; Gleadhill S
    J Sports Med Phys Fitness; 2023 Aug; 63(8):891-898. PubMed ID: 37166253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes.
    Lockie RG; Murphy AJ; Schultz AB; Jeffriess MD; Callaghan SJ
    J Strength Cond Res; 2013 Sep; 27(9):2494-503. PubMed ID: 23222091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations.
    Simperingham KD; Cronin JB; Ross A
    Sports Med; 2016 Nov; 46(11):1619-1645. PubMed ID: 26914267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of forearm wearable resistance on acceleration mechanics in collegiate track sprinters.
    Uthoff AM; Nagahara R; Macadam P; Neville J; Tinwala F; Graham SP; Cronin JB
    Eur J Sport Sci; 2020 Nov; 20(10):1346-1354. PubMed ID: 31973687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thigh positioned wearable resistance affects step frequency not step length during 50 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Uthoff AM; Nagahara R; Neville J; Graham SP; Tinwala F
    Eur J Sport Sci; 2020 May; 20(4):444-451. PubMed ID: 31282306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of step characteristics to sprint running performance in high-level male and female athletes.
    Debaere S; Jonkers I; Delecluse C
    J Strength Cond Res; 2013 Jan; 27(1):116-24. PubMed ID: 22395270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of duration and magnitude of force application to sprint performance during the initial acceleration, transition and maximal velocity phases.
    von Lieres Und Wilkau HC; Bezodis NE; Morin JB; Irwin G; Simpson S; Bezodis IN
    J Sports Sci; 2020 Oct; 38(20):2359-2366. PubMed ID: 32627681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.