These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33143611)

  • 21. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved biomaterials for tissue engineering applications: surface modification of polymers.
    Vasita R; Shanmugam I K; Katt DS
    Curr Top Med Chem; 2008; 8(4):341-53. PubMed ID: 18393896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carrageenans for tissue engineering and regenerative medicine applications: A review.
    Jafari A; Farahani M; Sedighi M; Rabiee N; Savoji H
    Carbohydr Polym; 2022 Apr; 281():119045. PubMed ID: 35074118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomaterials and scaffolds in bone and musculoskeletal engineering.
    Kosuge D; Khan WS; Haddad B; Marsh D
    Curr Stem Cell Res Ther; 2013 May; 8(3):185-91. PubMed ID: 23317466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in biopolymer-based hydrogels and their potential biomedical applications.
    Patel DK; Jung E; Priya S; Won SY; Han SS
    Carbohydr Polym; 2024 Jan; 323():121408. PubMed ID: 37940291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering?
    Abbasian M; Massoumi B; Mohammad-Rezaei R; Samadian H; Jaymand M
    Int J Biol Macromol; 2019 Aug; 134():673-694. PubMed ID: 31054302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of Poly(caprolactone)-based Nanofibre Electrospun Scaffolds in Tissue Engineering and Regenerative Medicine.
    Zhang W; Weng T; Li Q; Jin R; You C; Wu P; Shao J; Xia S; Yang M; Han C; Wang X
    Curr Stem Cell Res Ther; 2021; 16(4):414-442. PubMed ID: 33059569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomaterials and cells for neural tissue engineering: Current choices.
    Sensharma P; Madhumathi G; Jayant RD; Jaiswal AK
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1302-1315. PubMed ID: 28532008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in skin regeneration: application of electrospun scaffolds.
    Norouzi M; Boroujeni SM; Omidvarkordshouli N; Soleimani M
    Adv Healthc Mater; 2015 Jun; 4(8):1114-33. PubMed ID: 25721694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nano-fibrous tissue engineering scaffolds capable of growth factor delivery.
    Hu J; Ma PX
    Pharm Res; 2011 Jun; 28(6):1273-81. PubMed ID: 21234657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-free scaffold from jellyfish Cassiopea andromeda (Cnidaria; Scyphozoa) for skin tissue engineering.
    Fernández-Cervantes I; Rodríguez-Fuentes N; León-Deniz LV; Alcántara Quintana LE; Cervantes-Uc JM; Herrera Kao WA; Cerón-Espinosa JD; Cauich-Rodríguez JV; Castaño-Meneses VM
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110748. PubMed ID: 32279751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in double network hydrogels based on naturally-derived polymers: synthesis, properties, and biological applications.
    Sinad KVG; Ebubechukwu RC; Chu CK
    J Mater Chem B; 2023 Dec; 11(48):11460-11482. PubMed ID: 38047404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decellularization of Skin Tissue.
    Kumar N; Kumar V; Purohit S; Gangwar AK; Shrivastava S; Maiti SK; Saxena S; Mathews DD; Raghuvanshi PDS; Singh AK; Singh KP
    Adv Exp Med Biol; 2021; 1345():165-191. PubMed ID: 34582023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polymeric materials for tissue engineering of arterial substitutes.
    Ravi S; Qu Z; Chaikof EL
    Vascular; 2009; 17 Suppl 1(Suppl 1):S45-54. PubMed ID: 19426609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun inorganic and polymer composite nanofibers for biomedical applications.
    Sridhar R; Sundarrajan S; Venugopal JR; Ravichandran R; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(4):365-85. PubMed ID: 23565681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of natural polymers in bone tissue engineering.
    Guo L; Liang Z; Yang L; Du W; Yu T; Tang H; Li C; Qiu H
    J Control Release; 2021 Oct; 338():571-582. PubMed ID: 34481026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review.
    Van Vlierberghe S; Dubruel P; Schacht E
    Biomacromolecules; 2011 May; 12(5):1387-408. PubMed ID: 21388145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide grafting strategies before and after electrospinning of nanofibers.
    Bucci R; Vaghi F; Erba E; Romanelli A; Gelmi ML; Clerici F
    Acta Biomater; 2021 Mar; 122():82-100. PubMed ID: 33326882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.