These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 33143883)
1. Comparing chromium phyto-assessment in Brachiaria mutica and Leptochloa fusca growing on chromium polluted soil. Ullah S; Mahmood S; Ali R; Khan MR; Akhtar K; Depar N Chemosphere; 2021 Apr; 269():128728. PubMed ID: 33143883 [TBL] [Abstract][Full Text] [Related]
2. Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil. Ahsan MT; Najam-Ul-Haq M; Saeed A; Mustafa T; Afzal M Environ Sci Pollut Res Int; 2018 Mar; 25(7):7021-7032. PubMed ID: 29273991 [TBL] [Abstract][Full Text] [Related]
3. Assessment of chromium phytotoxicity, phytoremediation and tolerance potential of Sesbania sesban and Brachiaria mutica grown on chromite mine overburden dumps and garden soil. Patra DK; Pradhan C; Kumar J; Patra HK Chemosphere; 2020 Aug; 252():126553. PubMed ID: 32217406 [TBL] [Abstract][Full Text] [Related]
4. AM fungi mediated bioaccumulation of hexavalent chromium in Brachiaria mutica-a mycorrhizal phytoremediation approach. Kullu B; Patra DK; Acharya S; Pradhan C; Patra HK Chemosphere; 2020 Nov; 258():127337. PubMed ID: 32947656 [TBL] [Abstract][Full Text] [Related]
5. Bio-concentration of chromium--an in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Mohanty M; Pattnaik MM; Mishra AK; Patra HK Environ Monit Assess; 2012 Jan; 184(2):1015-24. PubMed ID: 21487717 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation potential of paragrass--an in situ approach for chromium contaminated soil. Mohanty M; Patra HK Int J Phytoremediation; 2012 Sep; 14(8):796-805. PubMed ID: 22908645 [TBL] [Abstract][Full Text] [Related]
7. Effective plant-endophyte interplay can improve the cadmium hyperaccumulation in Brachiaria mutica. Ahsan MT; Tahseen R; Ashraf A; Mahmood A; Najam-Ul-Haq M; Arslan M; Afzal M World J Microbiol Biotechnol; 2019 Nov; 35(12):188. PubMed ID: 31741120 [TBL] [Abstract][Full Text] [Related]
8. An in situ study of growth of Lemongrass Cymbopogon flexuosus (Nees ex Steud.) W. Watson on varying concentration of Chromium (Cr Patra DK; Pradhan C; Patra HK Chemosphere; 2018 Feb; 193():793-799. PubMed ID: 29175407 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of heavy metals spiked soil by Celosia argentea L.: effect on plant growth and metal stabilization. Hussain U; Afza R; Gul I; Sajad MA; Shah GM; Muhammad Z; Khan SM Environ Sci Pollut Res Int; 2024 Feb; 31(10):15339-15347. PubMed ID: 38294656 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. Ullah S; Mahmood T; Iqbal Z; Naeem A; Ali R; Mahmood S Int J Phytoremediation; 2019; 21(10):1012-1018. PubMed ID: 31016987 [TBL] [Abstract][Full Text] [Related]
11. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Mukhopadhyay S; Rana V; Kumar A; Maiti SK Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of chromium bioavailability through application of organic waste to Indian mustard (Brassica juncea) under chromium-contaminated Indian soils. Dotaniya ML; Rajendiran S; Saurabh K; Saha JK; Dotaniya CK; Patra AK Environ Monit Assess; 2022 Oct; 195(1):31. PubMed ID: 36282356 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. Amin H; Ahmed Arain B; Abbasi MS; Amin F; Jahangir TM; Soomro NU Int J Phytoremediation; 2019; 21(4):352-363. PubMed ID: 30638047 [TBL] [Abstract][Full Text] [Related]
14. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils. Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560 [TBL] [Abstract][Full Text] [Related]
15. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Fatima K; Imran A; Amin I; Khan QM; Afzal M Environ Sci Pollut Res Int; 2016 Apr; 23(7):6188-96. PubMed ID: 26606932 [TBL] [Abstract][Full Text] [Related]
16. [Characterization of Cr Tolerance and Accumulation in Dong BB; Chen YY; Hui HX; Lu WJ; Yang XQ; Liu YF Huan Jing Ke Xue; 2016 Oct; 37(10):4044-4053. PubMed ID: 29964442 [TBL] [Abstract][Full Text] [Related]
17. Efficiency of biogas slurry and Burkholderia phytofirmans PsJN to improve growth, physiology, and antioxidant activity of Brassica napus L. in chromium-contaminated soil. Nafees M; Ali S; Naveed M; Rizwan M Environ Sci Pollut Res Int; 2018 Mar; 25(7):6387-6397. PubMed ID: 29249026 [TBL] [Abstract][Full Text] [Related]
18. Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead. Ahsan MT; Najam-Ul-Haq M; Idrees M; Ullah I; Afzal M Int J Phytoremediation; 2017 Oct; 19(10):937-946. PubMed ID: 28324669 [TBL] [Abstract][Full Text] [Related]
19. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. UdDin I; Bano A; Masood S Ecotoxicol Environ Saf; 2015 Mar; 113():271-8. PubMed ID: 25528377 [TBL] [Abstract][Full Text] [Related]
20. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Usman K; Al-Ghouti MA; Abu-Dieyeh MH Sci Rep; 2019 Apr; 9(1):5658. PubMed ID: 30948781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]