These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33144001)

  • 1. Feasibility study on grouting material prepared from red mud and metallurgical wastewater based on synergistic theory.
    Li S; Zhang J; Li Z; Liu C; Chen J
    J Hazard Mater; 2021 Apr; 407():124358. PubMed ID: 33144001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pb
    Zhang J; Gao Y; Li Z; Wang C
    Chemosphere; 2023 Apr; 321():138129. PubMed ID: 36775033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Research on Mechanical Properties of Eco-Friendly Geopolymer Grouting Cementitious Materials Based on Industrial Solid Wastes.
    Li Z; Xu Y; Wu C; Zhang W; Chen Y; Li Y
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metals immobilization of ternary geopolymer based on nickel slag, lithium slag and metakaolin.
    Fan J; Yan J; Zhou M; Xu Y; Lu Y; Duan P; Zhu Y; Zhang Z; Li W; Wang A; Sun D
    J Hazard Mater; 2023 Jul; 453():131380. PubMed ID: 37043859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Immobilization of heavy metal Pb2+ with geopolymer].
    Jin MT; Jin ZF; Huang CJ
    Huan Jing Ke Xue; 2011 May; 32(5):1447-53. PubMed ID: 21780604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system.
    Ye N; Chen Y; Yang J; Liang S; Hu Y; Xiao B; Huang Q; Shi Y; Hu J; Wu X
    J Hazard Mater; 2016 Nov; 318():70-78. PubMed ID: 27399149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.
    Yunsheng Z; Wei S; Qianli C; Lin C
    J Hazard Mater; 2007 May; 143(1-2):206-13. PubMed ID: 17034943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization Approach as a Creative Strategy to Remove Reactive Dye Red 195 and Cu
    Ahmed DA; El-Apasery MA; Ragai SM
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics.
    Zhang N; Liu X; Sun H; Li L
    J Hazard Mater; 2011 Jan; 185(1):329-35. PubMed ID: 20932639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Immobilization Mechanism of Red Mud/Steel Slag-Based Geopolymers for Solidifying/Stabilizing Pb-Contaminated Soil.
    Wang X; Xue Y
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of red mud and waste glass on the microstructure, strength, and leaching behavior of bottom ash-based geopolymer composites.
    Bobirică C; Orbeci C; Bobirică L; Palade P; Deleanu C; Pantilimon CM; Pîrvu C; Radu IC
    Sci Rep; 2020 Nov; 10(1):19827. PubMed ID: 33188236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of red mud based binder for the immobilization of copper, lead and zinc.
    Wang F; Pan H; Xu J
    Environ Pollut; 2020 Aug; 263(Pt A):114416. PubMed ID: 32224388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Alkali-Activated Slag-Based Composite Incorporating Dehydrated Cement Powder and Red Mud.
    Abadel AA; Alghamdi H; Alharbi YR; Alamri M; Khawaji M; Abdulaziz MAM; Nehdi ML
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane/Red Mud Composites with Flexibility, Stretchability, and Flame Retardancy for Grouting.
    Zhang C; Shuai B; Zhang X; Hu X; Zhang H; Jia Y; Yang Z; Guan X
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material and structural characterization of alkali activated low-calcium brown coal fly ash.
    Skvára F; Kopecký L; Smilauer V; Bittnar Z
    J Hazard Mater; 2009 Sep; 168(2-3):711-20. PubMed ID: 19303704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling red mud from the production of aluminium as a red cement-based mortar.
    Yang X; Zhao J; Li H; Zhao P; Chen Q
    Waste Manag Res; 2017 May; 35(5):500-507. PubMed ID: 28142600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paraffin/red mud phase change energy storage composite incorporated gypsum-based and cement-based materials: Microstructures, thermal and mechanical properties.
    Liu Z; Zhang S; Hu D; Zhang Y; Lv H; Liu C; Chen Y; Sun J
    J Hazard Mater; 2019 Feb; 364():608-620. PubMed ID: 30391851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and property studies of ferric sulfoaluminate cement based on Bayer red mud and phosphogypsum.
    Ge C; Zhao Y; Li C; XunqiaoYan ; Liu R
    Environ Sci Pollut Res Int; 2024 May; 31(25):37594-37609. PubMed ID: 38780842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of controlled low-strength materials from alkali-excited red mud-slag-iron tailings sand and a study of the reaction mechanism.
    Jiang M; Qian Y; Sun Q
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22232-22248. PubMed ID: 36282375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Strength Formation Mechanism of Calcined Oyster Shell, Red Mud, Slag, and Iron Tailing Composite Cemented Paste Backfill.
    Lu H; Sun Q
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.