These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33144121)

  • 1. Effects of buoyant and Saffman lift force on magnetic drug targeting in microvessel in the presence of inertia.
    Sutradhar A
    Microvasc Res; 2021 Jan; 133():104099. PubMed ID: 33144121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic targeting in the impermeable microvessel with two-phase fluid model--non-Newtonian characteristics of blood.
    Shaw S; Murthy PV
    Microvasc Res; 2010 Sep; 80(2):209-20. PubMed ID: 20478317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic drug targeting in a permeable microvessel.
    Shaw S; Murthy PV; Sibanda P
    Microvasc Res; 2013 Jan; 85():77-85. PubMed ID: 23142713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic drug targeting during Caputo-Fabrizio fractionalized blood flow through a permeable vessel.
    Moitoi AJ; Shaw S
    Microvasc Res; 2022 Jan; 139():104262. PubMed ID: 34656560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Drug Delivery: Where the Field Is Going.
    Price PM; Mahmoud WE; Al-Ghamdi AA; Bronstein LM
    Front Chem; 2018; 6():619. PubMed ID: 30619827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.
    Weng HC
    J Biomech Eng; 2013 Mar; 135(3):34504. PubMed ID: 24231820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy.
    Manshadi MKD; Saadat M; Mohammadi M; Shamsi M; Dejam M; Kamali R; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):1963-1973. PubMed ID: 30799655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A study on the targeting collect character of ferromagnetic drug carrier particles in microvasculature].
    Li X; Guo P; Chen Y; Xiong P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):533-7. PubMed ID: 20649013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of nanoparticles in magnetic targeting: Comparison of magnetic, diffusive and convective forces and fluxes in the microvasculature, through vascular pores and across the interstitium.
    Kolitsi LI; Yiantsios SG
    Microvasc Res; 2020 Jul; 130():104007. PubMed ID: 32305349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear induced fractionalized dispersion during Magnetic Drug Targeting in a permeable microvessel.
    Ndenda JP; Shaw S; Njagarah JBH
    Colloids Surf B Biointerfaces; 2023 Jan; 221():113001. PubMed ID: 36379139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion characteristics of blood during nanoparticle assisted drug delivery process through a permeable microvessel.
    Shaw S; Ganguly S; Sibanda P; Chakraborty S
    Microvasc Res; 2014 Mar; 92():25-33. PubMed ID: 24406843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic particle targeting for diagnosis and therapy of lung cancers.
    Saadat M; Manshadi MKD; Mohammadi M; Zare MJ; Zarei M; Kamali R; Sanati-Nezhad A
    J Control Release; 2020 Dec; 328():776-791. PubMed ID: 32920079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the effect of SPION size in a stent assisted magnetic drug targeting system with interparticle interactions.
    Mardinoglu A; Cregg PJ
    ScientificWorldJournal; 2015; 2015():618658. PubMed ID: 25815370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical model of magnetic nanoparticle transport and capture in the microvasculature.
    Furlani EP; Ng KC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061919. PubMed ID: 16906876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomedicine: An effective tool in cancer therapy.
    Aftab S; Shah A; Nadhman A; Kurbanoglu S; Aysıl Ozkan S; Dionysiou DD; Shukla SS; Aminabhavi TM
    Int J Pharm; 2018 Apr; 540(1-2):132-149. PubMed ID: 29427746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical methodology for developing nanomaterials designed for magnetically-guided delivery of platinum anticancer drugs.
    Timerbaev AR
    Talanta; 2022 Jun; 243():123371. PubMed ID: 35287017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous blood flow in microvessels with applications to nanodrug transport and mass transfer into tumor tissue.
    Xu Z; Kleinstreuer C
    Biomech Model Mechanobiol; 2019 Feb; 18(1):99-110. PubMed ID: 30105538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.