These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 33144378)
21. Plac8-dependent and inducible NO synthase-dependent mechanisms clear Chlamydia muridarum infections from the genital tract. Johnson RM; Kerr MS; Slaven JE J Immunol; 2012 Feb; 188(4):1896-904. PubMed ID: 22238459 [TBL] [Abstract][Full Text] [Related]
22. The cryptic plasmid is more important for Chlamydia muridarum to colonize the mouse gastrointestinal tract than to infect the genital tract. Shao L; Melero J; Zhang N; Arulanandam B; Baseman J; Liu Q; Zhong G PLoS One; 2017; 12(5):e0177691. PubMed ID: 28542376 [TBL] [Abstract][Full Text] [Related]
23. An atypical CD8 T-cell response to Chlamydia muridarum genital tract infections includes T cells that produce interleukin-13. Johnson RM; Kerr MS; Slaven JE Immunology; 2014 Jun; 142(2):248-57. PubMed ID: 24428415 [TBL] [Abstract][Full Text] [Related]
26. IL-10 Producing B Cells Dampen Protective T Cell Response and Allow Sanchez LR; Godoy GJ; Gorosito Serrán M; Breser ML; Fiocca Vernengo F; Engel P; Motrich RD; Gruppi A; Rivero VE Front Immunol; 2019; 10():356. PubMed ID: 30881362 [TBL] [Abstract][Full Text] [Related]
27. Chlamydia muridarum plasmid induces mouse oviduct pathology by promoting chlamydial survival and ascending infection and triggering host inflammation. Hou S; Yue L; Xu R; Zhu C; Shan S; Wang H; Liu Q Eur J Dermatol; 2018 Oct; 28(5):628-636. PubMed ID: 30442635 [TBL] [Abstract][Full Text] [Related]
28. The Chromosome-Encoded Hypothetical Protein TC0668 Is an Upper Genital Tract Pathogenicity Factor of Chlamydia muridarum. Conrad TA; Gong S; Yang Z; Matulich P; Keck J; Beltrami N; Chen C; Zhou Z; Dai J; Zhong G Infect Immun; 2016 Feb; 84(2):467-79. PubMed ID: 26597987 [TBL] [Abstract][Full Text] [Related]
29. Protective immunity against mouse upper genital tract pathology correlates with high IFNγ but low IL-17 T cell and anti-secretion protein antibody responses induced by replicating chlamydial organisms in the airway. Lu C; Zeng H; Li Z; Lei L; Yeh IT; Wu Y; Zhong G Vaccine; 2012 Jan; 30(2):475-85. PubMed ID: 22079265 [TBL] [Abstract][Full Text] [Related]
31. Vaccination with the polymorphic membrane protein A reduces Chlamydia muridarum induced genital tract pathology. Müller T; Becker E; Stallmann S; Waldhuber A; Römmler-Dreher F; Albrecht S; Mohr F; Hegemann JH; Miethke T Vaccine; 2017 May; 35(21):2801-2810. PubMed ID: 28413133 [TBL] [Abstract][Full Text] [Related]
32. Vaccination with MIP or Pgp3 induces cross-serovar protection against chlamydial genital tract infection in mice. Luan X; Peng B; Li Z; Tang L; Chen C; Chen L; Wu H; Sun Z; Lu C Immunobiology; 2019 Mar; 224(2):223-230. PubMed ID: 30558842 [TBL] [Abstract][Full Text] [Related]
33. Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice. Carrasco SE; Hu S; Imai DM; Kumar R; Sandusky GE; Yang XF; Derbigny WA PLoS One; 2018; 13(4):e0195165. PubMed ID: 29624589 [TBL] [Abstract][Full Text] [Related]
34. Mutational Analysis of the Chlamydia muridarum Plasticity Zone. Rajaram K; Giebel AM; Toh E; Hu S; Newman JH; Morrison SG; Kari L; Morrison RP; Nelson DE Infect Immun; 2015 Jul; 83(7):2870-81. PubMed ID: 25939505 [TBL] [Abstract][Full Text] [Related]
35. Protective role of α-galactosylceramide-stimulated natural killer T cells in genital tract infection with Chlamydia muridarum. Wang H; Zhao L; Peng Y; Liu J; Qi M; Chen Q; Yang X; Zhao W FEMS Immunol Med Microbiol; 2012 Jun; 65(1):43-54. PubMed ID: 22309187 [TBL] [Abstract][Full Text] [Related]
36. Interruption of CXCL13-CXCR5 axis increases upper genital tract pathology and activation of NKT cells following chlamydial genital infection. Jiang J; Karimi O; Ouburg S; Champion CI; Khurana A; Liu G; Freed A; Pleijster J; Rozengurt N; Land JA; Surcel HM; Tiitinen A; Paavonen J; Kronenberg M; Morré SA; Kelly KA PLoS One; 2012; 7(11):e47487. PubMed ID: 23189125 [TBL] [Abstract][Full Text] [Related]
37. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Pal S; Tatarenkova OV; de la Maza LM Immunology; 2015 Nov; 146(3):432-43. PubMed ID: 26423798 [TBL] [Abstract][Full Text] [Related]
38. Role of TRAIL-R in Primary and Secondary Genital and Respiratory Chlamydia muridarum Infections in Mice. Pal S; Sheff S; Al-Kuhlani M; Ojcius DM; de la Maza LM Microbiol Spectr; 2022 Aug; 10(4):e0161722. PubMed ID: 35876584 [TBL] [Abstract][Full Text] [Related]
39. The p47phox deficiency significantly attenuates the pathogenicity of Chlamydia muridarum in the mouse oviduct but not uterine tissues. Dai J; Tang L; Chen J; Yu P; Chen Z; Zhong G Microbes Infect; 2016 Mar; 18(3):190-8. PubMed ID: 26645958 [TBL] [Abstract][Full Text] [Related]
40. Reduced live organism recovery and lack of hydrosalpinx in mice infected with plasmid-free Chlamydia muridarum. Lei L; Chen J; Hou S; Ding Y; Yang Z; Zeng H; Baseman J; Zhong G Infect Immun; 2014 Mar; 82(3):983-92. PubMed ID: 24343644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]