These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 33144546)

  • 21. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcription Factor Repurposing Offers Insights into Evolution of Biosynthetic Gene Cluster Regulation.
    Wang W; Drott M; Greco C; Luciano-Rosario D; Wang P; Keller NP
    mBio; 2021 Aug; 12(4):e0139921. PubMed ID: 34281384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates.
    Drott MT; Bastos RW; Rokas A; Ries LNA; Gabaldón T; Goldman GH; Keller NP; Greco C
    mSphere; 2020 Apr; 5(2):. PubMed ID: 32269157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A scalable platform to identify fungal secondary metabolites and their gene clusters.
    Clevenger KD; Bok JW; Ye R; Miley GP; Verdan MH; Velk T; Chen C; Yang K; Robey MT; Gao P; Lamprecht M; Thomas PM; Islam MN; Palmer JM; Wu CC; Keller NP; Kelleher NL
    Nat Chem Biol; 2017 Aug; 13(8):895-901. PubMed ID: 28604695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of an expression platform for fungal secondary metabolite biosynthesis in Penicillium crustosum.
    Zhou J; Chen X; Li SM
    Appl Microbiol Biotechnol; 2024 Jul; 108(1):427. PubMed ID: 39046587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art.
    Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi.
    Ullah M; Xia L; Xie S; Sun S
    Biotechnol Appl Biochem; 2020 Nov; 67(6):835-851. PubMed ID: 33179815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unveiling biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2.
    Fu Z; Gong X; Hu Z; Wei B; Zhang H
    BMC Genomics; 2024 Jun; 25(1):603. PubMed ID: 38886660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi.
    Tran PN; Yen MR; Chiang CY; Lin HC; Chen PY
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3277-3287. PubMed ID: 30859257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes.
    Robey MT; Caesar LK; Drott MT; Keller NP; Kelleher NL
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Research progress of CRISPR-Cas9 system for gene therapy].
    Zhan C; Xia X
    Sheng Wu Gong Cheng Xue Bao; 2016 Jul; 32(7):861-869. PubMed ID: 29019208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FunARTS, the Fungal bioActive compound Resistant Target Seeker, an exploration engine for target-directed genome mining in fungi.
    Yılmaz TM; Mungan MD; Berasategui A; Ziemert N
    Nucleic Acids Res; 2023 Jul; 51(W1):W191-W197. PubMed ID: 37207330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi.
    Woodcraft C; Chooi YH; Roux I
    Nat Prod Rep; 2023 Jan; 40(1):158-173. PubMed ID: 36205232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 35. Microevolution in the pansecondary metabolome of
    Drott MT; Rush TA; Satterlee TR; Giannone RJ; Abraham PE; Greco C; Venkatesh N; Skerker JM; Glass NL; Labbé JL; Milgroom MG; Keller NP
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34016748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FunOrder: A robust and semi-automated method for the identification of essential biosynthetic genes through computational molecular co-evolution.
    Vignolle GA; Schaffer D; Zehetner L; Mach RL; Mach-Aigner AR; Derntl C
    PLoS Comput Biol; 2021 Sep; 17(9):e1009372. PubMed ID: 34570757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology.
    Zheng YM; Lin FL; Gao H; Zou G; Zhang JW; Wang GQ; Chen GD; Zhou ZH; Yao XS; Hu D
    Sci Rep; 2017 Aug; 7(1):9250. PubMed ID: 28835711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterologous Expression of the Unusual Terreazepine Biosynthetic Gene Cluster Reveals a Promising Approach for Identifying New Chemical Scaffolds.
    Caesar LK; Robey MT; Swyers M; Islam MN; Ye R; Vagadia PP; Schiltz GE; Thomas PM; Wu CC; Kelleher NL; Keller NP; Bok JW
    mBio; 2020 Aug; 11(4):. PubMed ID: 32843555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.