These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 33144546)

  • 41. Advances in CRISPR-Cas systems for fungal infections.
    Singh A; Anwer M; Israr J; Kumar A
    Prog Mol Biol Transl Sci; 2024; 208():83-107. PubMed ID: 39266189
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in
    Wang X; Jarmusch SA; Frisvad JC; Larsen TO
    Nat Prod Rep; 2023 Feb; 40(2):237-274. PubMed ID: 35587705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Introduction to engineering the biosynthesis of fungal natural products.
    Cox RJ; Gulder TAM
    Nat Prod Rep; 2023 Jan; 40(1):7-8. PubMed ID: 36622035
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fungal secondary metabolism: regulation, function and drug discovery.
    Keller NP
    Nat Rev Microbiol; 2019 Mar; 17(3):167-180. PubMed ID: 30531948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Next-generation AMA1-based plasmids for enhanced heterologous expression in filamentous fungi.
    Roux I; Woodcraft C; Sbaraini N; Pepper A; Wong E; Bracegirdle J; Chooi YH
    Microb Biotechnol; 2024 Sep; 17(9):e70010. PubMed ID: 39276061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes.
    Schuster M; Kahmann R
    Fungal Genet Biol; 2019 Sep; 130():43-53. PubMed ID: 31048007
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR/Cas-based genome engineering in natural product discovery.
    Tong Y; Weber T; Lee SY
    Nat Prod Rep; 2019 Sep; 36(9):1262-1280. PubMed ID: 30548045
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species.
    Lind AL; Wisecaver JH; Lameiras C; Wiemann P; Palmer JM; Keller NP; Rodrigues F; Goldman GH; Rokas A
    PLoS Biol; 2017 Nov; 15(11):e2003583. PubMed ID: 29149178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.
    Bao Z; Xiao H; Liang J; Zhang L; Xiong X; Sun N; Si T; Zhao H
    ACS Synth Biol; 2015 May; 4(5):585-94. PubMed ID: 25207793
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi.
    Nødvig CS; Nielsen JB; Kogle ME; Mortensen UH
    PLoS One; 2015; 10(7):e0133085. PubMed ID: 26177455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational strategies for genome-based natural product discovery and engineering in fungi.
    van der Lee TAJ; Medema MH
    Fungal Genet Biol; 2016 Apr; 89():29-36. PubMed ID: 26775250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genes Linked to Production of Secondary Metabolites in Talaromyces atroroseus Revealed Using CRISPR-Cas9.
    Nielsen ML; Isbrandt T; Rasmussen KB; Thrane U; Hoof JB; Larsen TO; Mortensen UH
    PLoS One; 2017; 12(1):e0169712. PubMed ID: 28056079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Manipulation of the Global Regulator
    Yuan B; Keller NP; Oakley BR; Stajich JE; Wang CCC
    ACS Chem Biol; 2022 Oct; 17(10):2828-2835. PubMed ID: 36197945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of CRISPR in Filamentous Fungi and Macrofungi: From Component Function to Development Potentiality.
    Shen JY; Zhao Q; He QL
    ACS Synth Biol; 2023 Jul; 12(7):1908-1923. PubMed ID: 37404005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New insights of CRISPR technology in human pathogenic fungi.
    Román E; Prieto D; Alonso-Monge R; Pla J
    Future Microbiol; 2019 Sep; 14():1243-1255. PubMed ID: 31625446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi.
    Jiang C; Lv G; Tu Y; Cheng X; Duan Y; Zeng B; He B
    Front Microbiol; 2021; 12():638096. PubMed ID: 33643273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.