These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33144652)

  • 1. Performance controlled via surface oxygen-vacancy in Ti-based oxide catalyst during methyl oleate epoxidation.
    Praserthdam S; Rittiruam M; Maungthong K; Saelee T; Somdee S; Praserthdam P
    Sci Rep; 2020 Nov; 10(1):18952. PubMed ID: 33144652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of chlorine-poisoning mechanism of MnO
    Lin F; Wang Q; Huang X; Jin J
    J Environ Manage; 2021 Nov; 298():113454. PubMed ID: 34365187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 Catalyst.
    Wells DH; Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2006 Aug; 110(30):14627-39. PubMed ID: 16869565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated fast-mass transfer and high Ti-sites utilization into hybrid amphiphilic TS@PMO catalyst towards efficient solvent-free methyl oleate epoxidation.
    Wei Y; Li G; Wang C; Guo H
    J Colloid Interface Sci; 2021 Mar; 586():233-242. PubMed ID: 33176930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study of propylene epoxidation with H2 and O2 over Au/Ti-SiO2 in the explosive regime.
    Chen J; Halin SJ; Schouten JC; Nijhuis TA
    Faraday Discuss; 2011; 152():321-36; discussion 393-413. PubMed ID: 22455053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Titanium in Controlling Silver Particle Size on Enhancement of Catalytic Performance of AgMoO
    AbdelDayem HM; Al-Shihry SS; Hassan SA
    ACS Omega; 2020 Mar; 5(9):4469-4481. PubMed ID: 32175494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ti
    Zhang Z; Wang ZL; An K; Wang J; Zhang S; Song P; Bando Y; Yamauchi Y; Liu Y
    Small; 2021 Jun; 17(23):e2008052. PubMed ID: 33887101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New mechanistic insight into catalytic decomposition of dioxins over MnO
    Wang Q; Wu Z; Wang R; Tang M; Lu S; Cai T; Qiu J; Jin J; Peng Y
    Sci Total Environ; 2024 Apr; 921():170911. PubMed ID: 38354796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ti
    Zhao W; Zhang K; Wu L; Wang Q; Shang D; Zhong Q
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):76-83. PubMed ID: 32768736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study.
    Wells DH; Delgass WN; Thomson KT
    J Am Chem Soc; 2004 Mar; 126(9):2956-62. PubMed ID: 14995213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3.
    Gao X; Jiang Y; Zhong Y; Luo Z; Cen K
    J Hazard Mater; 2010 Feb; 174(1-3):734-9. PubMed ID: 19837510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ti-containing mesoporous organosilica as a photocatalyst for selective olefin epoxidation.
    Morishita M; Shiraishi Y; Hirai T
    J Phys Chem B; 2006 Sep; 110(36):17898-905. PubMed ID: 16956279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promotional Effects of Ti on a CeO
    Geng Y; Chen X; Yang S; Liu F; Shan W
    ACS Appl Mater Interfaces; 2017 May; 9(20):16951-16958. PubMed ID: 28471163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of surface modification of Ti-SBA15 catalysts on the epoxidation mechanism for cyclohexene with aqueous hydrogen peroxide.
    Brutchey RL; Ruddy DA; Andersen LK; Tilley TD
    Langmuir; 2005 Oct; 21(21):9576-83. PubMed ID: 16207038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Oxygen Vacancy Sites in Ceria-Based High-Entropy Oxides and Their Role in N
    Elmutasim O; Hussien AG; Sharan A; AlKhoori S; Vasiliades MA; Taha IMA; Kim S; Harfouche M; Emwas AH; Anjum DH; Efstathiou AM; Yavuz CT; Singh N; Polychronopoulou K
    ACS Appl Mater Interfaces; 2024 Apr; 16(18):23038-53. PubMed ID: 38684003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of outer-sphere surface acidity in alkene epoxidation catalyzed by calixarene-Ti(IV) complexes.
    Notestein JM; Solovyov A; Andrini LR; Requejo FG; Katz A; Iglesia E
    J Am Chem Soc; 2007 Dec; 129(50):15585-95. PubMed ID: 18031040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of water, alkyl hydroperoxide, and allylic alcohol with a single-site homogeneous Ti-Si epoxidation catalyst: A spectroscopic and computational study.
    Urakawa A; Bürgi T; Skrabal P; Bangerter F; Baiker A
    J Phys Chem B; 2005 Feb; 109(6):2212-21. PubMed ID: 16851213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction.
    Ho VT; Pan CJ; Rick J; Su WN; Hwang BJ
    J Am Chem Soc; 2011 Aug; 133(30):11716-24. PubMed ID: 21707063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Induced Generation and Regeneration of Oxygen Vacancies in BiSbO
    Ran M; Wang H; Cui W; Li J; Chen P; Sun Y; Sheng J; Zhou Y; Zhang Y; Dong F
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47984-47991. PubMed ID: 31802653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.