These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33144986)

  • 1. Functional shifts in estuarine zooplankton in response to climate variability.
    Jansson A; Klais-Peets R; Grinienė E; Rubene G; Semenova A; Lewandowska A; Engström-Öst J
    Ecol Evol; 2020 Oct; 10(20):11591-11606. PubMed ID: 33144986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zooplankton indicator-based assessment in relation to site location and abiotic factors: a case study from the Gulf of Riga.
    Labuce A; Dimante-Deimantovica I; Tunens J; Strake S
    Environ Monit Assess; 2020 Jan; 192(2):147. PubMed ID: 31997068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term variation of zooplankton communities in a large, heterogenous lake: Implications for future environmental change scenarios.
    Zhou J; Qin B; Zhu G; Zhang Y; Gao G
    Environ Res; 2020 Aug; 187():109704. PubMed ID: 32473462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): the importance of changes in the zooplankton community.
    Lankov A; Ojaveer H; Simm M; Põllupüü M; Möllmann C
    J Fish Biol; 2010 Dec; 77(10):2268-84. PubMed ID: 21155782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change and eutrophication induced shifts in northern summer plankton communities.
    Suikkanen S; Pulina S; Engström-Öst J; Lehtiniemi M; Lehtinen S; Brutemark A
    PLoS One; 2013; 8(6):e66475. PubMed ID: 23776676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.
    Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP
    Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indicator Properties of Baltic Zooplankton for Classification of Environmental Status within Marine Strategy Framework Directive.
    Gorokhova E; Lehtiniemi M; Postel L; Rubene G; Amid C; Lesutiene J; Uusitalo L; Strake S; Demereckiene N
    PLoS One; 2016; 11(7):e0158326. PubMed ID: 27410261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Habitat heterogeneity determines climate impact on zooplankton community structure and dynamics.
    Otto SA; Diekmann R; Flinkman J; Kornilovs G; Möllmann C
    PLoS One; 2014; 9(3):e90875. PubMed ID: 24614110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rise of novelty in marine ecosystems: The Baltic Sea case.
    Ammar Y; Niiranen S; Otto SA; Möllmann C; Finsinger W; Blenckner T
    Glob Chang Biol; 2021 Apr; 27(7):1485-1499. PubMed ID: 33438266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A long-term study on zooplankton in two contrasting cascade reservoirs (Iguaçu River, Brazil): effects of inter-annual, seasonal, and environmental factors.
    Picapedra PHS; Fernandes C; Taborda J; Baumgartner G; Sanches PV
    PeerJ; 2020; 8():e8979. PubMed ID: 32411516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in recruitment and life-history strategy alter zooplankton spring dynamics under climate-change conditions.
    Ekvall MK; Hansson LA
    PLoS One; 2012; 7(9):e44614. PubMed ID: 22970267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental factors controlling seasonal and spatial variability of zooplankton in thermokarst lakes along a permafrost gradient of Western Siberia.
    Noskov YA; Manasypov RM; Ermolaeva NI; Antonets DV; Shirokova LS; Pokrovsky OS
    Sci Total Environ; 2024 Apr; 922():171284. PubMed ID: 38432389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual body size as a predictor of lipid storage in Baltic Sea zooplankton.
    Gorokhova E
    J Plankton Res; 2019 May; 41(3):273-280. PubMed ID: 31686719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of long-term environmental change on zooplankton along the southwestern coast of India.
    Athira TR; Nefla A; Shifa CT; Shamna H; Aarif KM; AlMaarofi SS; Rashiba AP; Reshi OR; Jobiraj T; Thejass P; Muzaffar SB
    Environ Monit Assess; 2022 Mar; 194(4):316. PubMed ID: 35355144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal changes in the abundance and biomass of copepods in the south-eastern Baltic Sea in 2010 and 2011.
    Dzierzbicka-Glowacka L; Lemieszek A; Kalarus M; Griniene E
    PeerJ; 2018; 6():e5562. PubMed ID: 30210945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life-history traits buffer against heat wave effects on predator-prey dynamics in zooplankton.
    Zhang H; Urrutia-Cordero P; He L; Geng H; Chaguaceda F; Xu J; Hansson LA
    Glob Chang Biol; 2018 Oct; 24(10):4747-4757. PubMed ID: 29963731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term abundance dynamics of coastal zooplankton in the Gulf of Riga.
    Ikauniece A
    Environ Int; 2001 Jan; 26(3):175-81. PubMed ID: 11341703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies of zooplanktivory shape the dynamics and diversity of littoral plankton communities: a mesocosm approach.
    Helenius LK; Aymà Padrós A; Leskinen E; Lehtonen H; Nurminen L
    Ecol Evol; 2015 May; 5(10):2021-35. PubMed ID: 26045953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compilation of quantitative functional traits for marine and freshwater crustacean zooplankton.
    Hébert MP; Beisner BE; Maranger R
    Ecology; 2016 Apr; 97(4):1081. PubMed ID: 28792594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multivariate Baltic Sea environmental index.
    Dippner JW; Kornilovs G; Junker K
    Ambio; 2012 Nov; 41(7):699-708. PubMed ID: 22430308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.