These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33145880)

  • 21. Preparation and time-resolved luminescence bioassay application of multicolor luminescent lanthanide nanoparticles.
    Jiang H; Wang G; Zhang W; Liu X; Ye Z; Jin D; Yuan J; Liu Z
    J Fluoresc; 2010 Jan; 20(1):321-8. PubMed ID: 19851848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vivo Repeatedly Activated Persistent Luminescence Nanoparticles by Radiopharmaceuticals for Long-Lasting Tumor Optical Imaging.
    Liu N; Shi J; Wang Q; Guo J; Hou Z; Su X; Zhang H; Sun X
    Small; 2020 Jul; 16(26):e2001494. PubMed ID: 32510845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imaging-Guided Photodynamic Therapy.
    Zheng X; Wu W; Zheng Y; Ding Y; Xiang Y; Liu B; Tong A
    Chemistry; 2021 Apr; 27(23):6911-6916. PubMed ID: 33556210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Blue Afterglow through Molecular Fusion for Bio-applications.
    Su X; Kong X; Sun K; Liu Q; Pei Y; Hu D; Xu M; Feng W; Li F
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202201630. PubMed ID: 35353427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing.
    Peng H; Xie G; Cao Y; Zhang L; Yan X; Zhang X; Miao S; Tao Y; Li H; Zheng C; Huang W; Chen R
    Sci Adv; 2022 Apr; 8(15):eabk2925. PubMed ID: 35427159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulating electron population pathways for time-dependent dynamic multicolor displays.
    Xu W; Lei L; Wang Y; Liu E; Chen L; Xu S
    Mater Horiz; 2021 Nov; 8(12):3443-3448. PubMed ID: 34723303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct in Situ Fabrication of Multicolor Afterglow Carbon Dot Patterns with Transparent and Traceless Features via Laser Direct Writing.
    Li Q; Zhao H; Yang D; Meng S; Gu H; Xiao C; Li Y; Cheng D; Qu S; Zeng H; Zhu X; Tan J; Ding J
    Nano Lett; 2024 Mar; 24(10):3028-3035. PubMed ID: 38411557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells.
    King SM; Claire S; Teixeira RI; Dosumu AN; Carrod AJ; Dehghani H; Hannon MJ; Ward AD; Bicknell R; Botchway SW; Hodges NJ; Pikramenou Z
    J Am Chem Soc; 2018 Aug; 140(32):10242-10249. PubMed ID: 30032598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging.
    Pei P; Chen Y; Sun C; Fan Y; Yang Y; Liu X; Lu L; Zhao M; Zhang H; Zhao D; Liu X; Zhang F
    Nat Nanotechnol; 2021 Sep; 16(9):1011-1018. PubMed ID: 34112994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles.
    Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K
    Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multicolor Output from 2D Hybrid Perovskites with Wide Band Gap: Highly Efficient White Emission, Dual-Color Afterglow, and Switch between Fluorescence and Phosphorescence.
    Huang Q; Yang S; Feng S; Zhen H; Lin Z; Ling Q
    J Phys Chem Lett; 2021 Jan; 12(3):1040-1045. PubMed ID: 33470819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents.
    Dang Q; Jiang Y; Wang J; Wang J; Zhang Q; Zhang M; Luo S; Xie Y; Pu K; Li Q; Li Z
    Adv Mater; 2020 Dec; 32(52):e2006752. PubMed ID: 33175432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorine-induced aggregate-interlocking for color-tunable organic afterglow with a simultaneously improved efficiency and lifetime.
    Li H; Li H; Gu J; He F; Peng H; Tao Y; Tian D; Yang Q; Li P; Zheng C; Huang W; Chen R
    Chem Sci; 2021 Jan; 12(10):3580-3586. PubMed ID: 34163631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery.
    Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D
    Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Mode-Tuned Tricolor Emissions of Upconversion/Afterglow Hybrids for Anticounterfeiting Applications.
    Hu Y; Li S; Yu S; Chen S; Yan Y; Liu Y; Chen Y; Chen C; Shao Q; Liu Y
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment.
    Wang X; Pu K
    Chem Soc Rev; 2023 Jul; 52(14):4549-4566. PubMed ID: 37350132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-component color-tunable circularly polarized organic afterglow through chiral clusterization.
    Li H; Gu J; Wang Z; Wang J; He F; Li P; Tao Y; Li H; Xie G; Huang W; Zheng C; Chen R
    Nat Commun; 2022 Jan; 13(1):429. PubMed ID: 35058447
    [