These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33146013)

  • 1. Experimental Investigation of Water Droplet Impact on the Electrospun Superhydrophobic Cylindrical Glass: Contact Time, Maximum Spreading Factor, and Splash Threshold.
    Khanzadeh Borjak S; Rafee R; Valipour MS
    Langmuir; 2020 Nov; 36(45):13498-13508. PubMed ID: 33146013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study of Diesel-Fuel Droplet Impact on a Similarly Sized Polished Spherical Heated Solid Particle.
    Jadidbonab H; Mitroglou N; Karathanassis I; Gavaises M
    Langmuir; 2018 Jan; 34(1):36-49. PubMed ID: 29172533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures.
    Quan Y; Zhang LZ
    Langmuir; 2014 Oct; 30(39):11640-9. PubMed ID: 25203603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial spreading of droplet impact on ridged superhydrophobic surfaces.
    Hu Z; Zhang X; Gao S; Yuan Z; Lin Y; Chu F; Wu X
    J Colloid Interface Sci; 2021 Oct; 599():130-139. PubMed ID: 33933788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact time of impacting droplets on a superhydrophobic surface with tunable curvature and groove orientation.
    Guo C; Liu L; Liu C
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34814124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces.
    Wang Y; Zhao Y; Sun L; Mehrizi AA; Lin S; Guo J; Chen L
    Langmuir; 2022 Mar; 38(12):3860-3867. PubMed ID: 35293214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces with a Ridge.
    Chen X; Wang YF; Yang YR; Wang XD; Lee DJ
    Langmuir; 2023 Dec; 39(50):18644-18653. PubMed ID: 38051278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectively splitting a droplet using superhydrophobic stripes on hydrophilic surfaces.
    Song D; Song B; Hu H; Du X; Zhou F
    Phys Chem Chem Phys; 2015 Jun; 17(21):13800-3. PubMed ID: 25946666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Asymmetry on the Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces.
    Chen X; Zhang LZ; Wang YF; Jin JX; Wang YB; Yang YR; Gao SR; Zheng SF; Wang XD; Lee DJ
    Langmuir; 2023 Dec; 39(51):19037-19047. PubMed ID: 38096493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features.
    Abolghasemibizaki M; McMasters RL; Mohammadi R
    J Colloid Interface Sci; 2018 Jul; 521():17-23. PubMed ID: 29547785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further Step toward a Comprehensive Understanding of the Effect of Surfactant Additions on Altering the Impact Dynamics of Water Droplets.
    Esmaeili AR; Mir N; Mohammadi R
    Langmuir; 2021 Jan; 37(2):841-851. PubMed ID: 33397113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.
    Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z
    Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rebounding suppression of droplet impact on hot surfaces: effect of surface temperature and concaveness.
    Jowkar S; Morad MR
    Soft Matter; 2019 Jan; 15(5):1017-1026. PubMed ID: 30657147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.