These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33146013)

  • 21. Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface.
    Xu H; Chang C; Yi N; Tao P; Song C; Wu J; Deng T; Shang W
    ACS Omega; 2019 Oct; 4(18):17615-17622. PubMed ID: 31681868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact Dynamics of Non-Newtonian Droplets on Superhydrophobic Surfaces.
    Biroun MH; Haworth L; Abdolnezhad H; Khosravi A; Agrawal P; McHale G; Torun H; Semprebon C; Jabbari M; Fu YQ
    Langmuir; 2023 Apr; 39(16):5793-5802. PubMed ID: 37041655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Droplet Impinging Behavior on Surfaces with Wettability Contrasts.
    Farshchian B; Pierce J; Beheshti MS; Park S; Kim N
    Microelectron Eng; 2018 Aug; 195():50-56. PubMed ID: 30270957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonwettable Hierarchical Structure Effect on Droplet Impact and Spreading Dynamics.
    Kim H; Kim SH
    Langmuir; 2018 May; 34(19):5480-5486. PubMed ID: 29706077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet impact on soft viscoelastic surfaces.
    Chen L; Bonaccurso E; Deng P; Zhang H
    Phys Rev E; 2016 Dec; 94(6-1):063117. PubMed ID: 28085484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet impact on cylindrical surfaces: Effects of surface wettability, initial impact velocity, and cylinder size.
    Wang Y; Wang Y; Wang S
    J Colloid Interface Sci; 2020 Oct; 578():207-217. PubMed ID: 32531551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact Dynamics of a Droplet on Superhydrophobic Cylinders Structured with a Macro Ridge.
    Zhang LZ; Chen X; Yang YR; Wang XD
    Langmuir; 2023 May; 39(18):6375-6386. PubMed ID: 37092810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.
    Mohammadi M; Tembely M; Dolatabadi A
    Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superhydrophobic Strategy for Nature-Inspired Rotating Microfliers: Enhancing Spreading, Reducing Contact Time, and Weakening Impact Force of Raindrops.
    Shu Y; Chu F; Hu Z; Gao J; Wu X; Dong Z; Feng Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57340-57349. PubMed ID: 36512411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drop impact on inclined superhydrophobic surfaces.
    LeClear S; LeClear J; Abhijeet ; Park KC; Choi W
    J Colloid Interface Sci; 2016 Jan; 461():114-121. PubMed ID: 26397917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays.
    Aria AI; Gharib M
    Langmuir; 2014 Jun; 30(23):6780-90. PubMed ID: 24866696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uniform Spread of High-Speed Drops on Superhydrophobic Surface by Live-Oligomeric Surfactant Jamming.
    Luo S; Chen Z; Dong Z; Fan Y; Chen Y; Liu B; Yu C; Li C; Dai H; Li H; Wang Y; Jiang L
    Adv Mater; 2019 Oct; 31(41):e1904475. PubMed ID: 31465133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drop-on-Drop Impact Dynamics on a Superhydrophobic Surface.
    Jaiswal AK; Khandekar S
    Langmuir; 2021 Nov; 37(43):12629-12642. PubMed ID: 34670364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contact angles of drops on curved superhydrophobic surfaces.
    Viswanadam G; Chase GG
    J Colloid Interface Sci; 2012 Feb; 367(1):472-7. PubMed ID: 22129634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.
    Dong F; Zhang M; Tang WW; Wang Y
    J Phys Chem B; 2015 Apr; 119(16):5321-7. PubMed ID: 25835644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.