These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33146064)

  • 1. Arm cycling increases the short-latency reflex from ankle dorsiflexor afferents to knee extensor muscles.
    Sasada S; Tazoe T; Nakajima T; Omori S; Futatsubashi G; Komiyama T
    J Neurophysiol; 2021 Jan; 125(1):110-119. PubMed ID: 33146064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.
    Sasada S; Tazoe T; Nakajima T; Futatsubashi G; Ohtsuka H; Suzuki S; Zehr EP; Komiyama T
    J Neurophysiol; 2016 Apr; 115(4):2065-75. PubMed ID: 26961103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of non-monosynaptic excitation from ankle dorsiflexor afferents to quadriceps motoneurones during human walking.
    Marchand-Pauvert V; Nielsen JB
    J Physiol; 2002 Jan; 538(Pt 2):647-57. PubMed ID: 11790826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhythmic arm cycling modulates Hoffmann reflex excitability differentially in the ankle flexor and extensor muscles.
    Dragert K; Zehr EP
    Neurosci Lett; 2009 Feb; 450(3):235-8. PubMed ID: 19028550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential modulation of reciprocal inhibition in ankle muscles during rhythmic arm cycling.
    Dragert K; Zehr EP
    Neurosci Lett; 2013 Feb; 534():269-73. PubMed ID: 23201634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks.
    Zehr EP; Balter JE; Ferris DP; Hundza SR; Loadman PM; Stoloff RH
    J Physiol; 2007 Jul; 582(Pt 1):209-27. PubMed ID: 17463036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man.
    Petersen N; Morita H; Nielsen J
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):605-19. PubMed ID: 10523426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-latency, inhibitory spinal pathway to ankle flexors activated by homonymous group 1 afferents.
    Zewdie ET; Roy FD; Okuma Y; Yang JF; Gorassini MA
    J Neurophysiol; 2014 Jun; 111(12):2544-53. PubMed ID: 24671544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre- and post-alpha motoneuronal control of the soleus H-reflex during sinusoidal hip movements in human spinal cord injury.
    Knikou M; Chaudhuri D; Kay E; Schmit BD
    Brain Res; 2006 Aug; 1103(1):123-39. PubMed ID: 16782072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning.
    Frigon A; Collins DF; Zehr EP
    J Neurophysiol; 2004 Apr; 91(4):1516-23. PubMed ID: 14657191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification of interlimb reflexes evoked by stimulating the hand simultaneously with conditioning from the foot during locomotion.
    Nakajima T; Barss T; Klarner T; Komiyama T; Zehr EP
    BMC Neurosci; 2013 Mar; 14():28. PubMed ID: 23497331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation.
    Kaupp C; Pearcey GEP; Klarner T; Sun Y; Cullen H; Barss TS; Zehr EP
    J Neurophysiol; 2018 Mar; 119(3):1095-1112. PubMed ID: 29212917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion.
    Geertsen SS; van de Ruit M; Grey MJ; Nielsen JB
    J Physiol; 2011 Dec; 589(Pt 23):5819-31. PubMed ID: 21986208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles.
    Thompson AK; Doran B; Stein RB
    Exp Brain Res; 2006 Apr; 170(2):216-26. PubMed ID: 16317575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of heteronymous reflexes from ankle dorsiflexors to hamstring muscles during human walking.
    Marchand-Pauvert V; Nielsen JB
    Exp Brain Res; 2002 Feb; 142(3):402-8. PubMed ID: 11819049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence in reflex pathways from multiple cutaneous nerves innervating the foot depends upon the number of rhythmically active limbs during locomotion.
    Nakajima T; Mezzarane RA; Hundza SR; Komiyama T; Zehr EP
    PLoS One; 2014; 9(8):e104910. PubMed ID: 25170606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced spinal excitation from ankle flexors to knee extensors during walking in stroke patients.
    Achache V; Mazevet D; Iglesias C; Lackmy A; Nielsen JB; Katz R; Marchand-Pauvert V
    Clin Neurophysiol; 2010 Jun; 121(6):930-8. PubMed ID: 20153246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.