These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 33146642)
1. Mechanical phenotyping of breast cell lines by in-flow deformation-dependent dynamics under tuneable compressive forces. Dannhauser D; Maremonti MI; Panzetta V; Rossi D; Netti PA; Causa F Lab Chip; 2020 Dec; 20(24):4611-4622. PubMed ID: 33146642 [TBL] [Abstract][Full Text] [Related]
2. Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping. Liang M; Yang D; Zhou Y; Li P; Zhong J; Ai Y Anal Chem; 2021 Mar; 93(10):4567-4575. PubMed ID: 33661609 [TBL] [Abstract][Full Text] [Related]
3. Deformation of leukaemia cell lines in hyperbolic microchannels: investigating the role of shear and extensional components. Piergiovanni M; Galli V; Holzner G; Stavrakis S; DeMello A; Dubini G Lab Chip; 2020 Jul; 20(14):2539-2548. PubMed ID: 32567621 [TBL] [Abstract][Full Text] [Related]
4. The role of nuclear mechanics in cell deformation under creeping flows. Serrano-Alcalde F; García-Aznar JM; Gómez-Benito MJ J Theor Biol; 2017 Nov; 432():25-32. PubMed ID: 28802825 [TBL] [Abstract][Full Text] [Related]
5. Cell deformability heterogeneity recognition by unsupervised machine learning from in-flow motion parameters. Maremonti MI; Dannhauser D; Panzetta V; Netti PA; Causa F Lab Chip; 2022 Dec; 22(24):4871-4881. PubMed ID: 36398860 [TBL] [Abstract][Full Text] [Related]
6. Characterizing cellular mechanical phenotypes with mechano-node-pore sensing. Kim J; Han S; Lei A; Miyano M; Bloom J; Srivastava V; Stampfer MM; Gartner ZJ; LaBarge MA; Sohn LL Microsyst Nanoeng; 2018; 4():. PubMed ID: 29780657 [TBL] [Abstract][Full Text] [Related]
7. Tank-treading and tumbling frequencies of capsules and red blood cells. Yazdani AZ; Kalluri RM; Bagchi P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293 [TBL] [Abstract][Full Text] [Related]
8. The physical origins of transit time measurements for rapid, single cell mechanotyping. Nyberg KD; Scott MB; Bruce SL; Gopinath AB; Bikos D; Mason TG; Kim JW; Choi HS; Rowat AC Lab Chip; 2016 Aug; 16(17):3330-9. PubMed ID: 27435631 [TBL] [Abstract][Full Text] [Related]
9. Deformability of breast cancer cells in correlation with surface markers and cell rolling. Mohammadalipour A; Burdick MM; Tees DFJ FASEB J; 2018 Apr; 32(4):1806-1817. PubMed ID: 29162703 [TBL] [Abstract][Full Text] [Related]
10. Deformation under flow and morphological recovery of cancer cells. Gasser E; Su E; Vaidžiulytė K; Abbade N; Cognart H; Manneville JB; Viovy JL; Piel M; Pierga JY; Terao K; Villard C Lab Chip; 2024 Aug; 24(16):3930-3944. PubMed ID: 38993177 [TBL] [Abstract][Full Text] [Related]
11. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K; Wada S; Liu H Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211 [TBL] [Abstract][Full Text] [Related]
12. Physical Biomarkers of Disease Progression: On-Chip Monitoring of Changes in Mechanobiology of Colorectal Cancer Cells. Armistead FJ; Gala De Pablo J; Gadêlha H; Peyman SA; Evans SD Sci Rep; 2020 Feb; 10(1):3254. PubMed ID: 32094413 [TBL] [Abstract][Full Text] [Related]
13. Interpretation of cell mechanical experiments in microfluidic systems depend on the choice of cellular shape descriptors. Fregin B; Biedenweg D; Otto O Biomicrofluidics; 2022 Mar; 16(2):024109. PubMed ID: 35541026 [TBL] [Abstract][Full Text] [Related]
14. High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry. Fregin B; Czerwinski F; Biedenweg D; Girardo S; Gross S; Aurich K; Otto O Nat Commun; 2019 Jan; 10(1):415. PubMed ID: 30679420 [TBL] [Abstract][Full Text] [Related]
15. Vesicles under simple shear flow: elucidating the role of relevant control parameters. Kaoui B; Farutin A; Misbah C Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061905. PubMed ID: 20365188 [TBL] [Abstract][Full Text] [Related]
16. Vacillating breathing and tumbling of vesicles under shear flow. Misbah C Phys Rev Lett; 2006 Jan; 96(2):028104. PubMed ID: 16486649 [TBL] [Abstract][Full Text] [Related]
17. Macrorheology and adaptive microrheology of endothelial cells subjected to fluid shear stress. Dangaria JH; Butler PJ Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1568-75. PubMed ID: 17670893 [TBL] [Abstract][Full Text] [Related]