BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33146654)

  • 1. Transition metal catalyzed glycosylation reactions - an overview.
    Bauer EB
    Org Biomol Chem; 2020 Nov; 18(45):9160-9180. PubMed ID: 33146654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs.
    Soldevila-Barreda JJ; Metzler-Nolte N
    Chem Rev; 2019 Jan; 119(2):829-869. PubMed ID: 30618246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Catalyzed Approaches toward the Oxindole Core.
    Marchese AD; Larin EM; Mirabi B; Lautens M
    Acc Chem Res; 2020 Aug; 53(8):1605-1619. PubMed ID: 32706589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium catalysis for the synthesis of fine chemicals - development and trends.
    Manßen M; Schafer LL
    Chem Soc Rev; 2020 Oct; 49(19):6947-6994. PubMed ID: 32852007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building a Toolbox for the Analysis and Prediction of Ligand and Catalyst Effects in Organometallic Catalysis.
    Durand DJ; Fey N
    Acc Chem Res; 2021 Feb; 54(4):837-848. PubMed ID: 33533587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold(I)-Catalyzed Glycosylation with Glycosyl o-Alkynylbenzoates as Donors.
    Yu B
    Acc Chem Res; 2018 Feb; 51(2):507-516. PubMed ID: 29297680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organogold reactivity with palladium, nickel, and rhodium: transmetalation, cross-coupling, and dual catalysis.
    Hirner JJ; Shi Y; Blum SA
    Acc Chem Res; 2011 Aug; 44(8):603-13. PubMed ID: 21644576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalyst-Controlled, Regioselective Reactions of Carbohydrate Derivatives.
    Taylor MS
    Top Curr Chem; 2016; 372():125-55. PubMed ID: 26287121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts.
    Pelletier JD; Basset JM
    Acc Chem Res; 2016 Apr; 49(4):664-77. PubMed ID: 26959689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-oxidation state indium-catalyzed C-C bond formation.
    Schneider U; Kobayashi S
    Acc Chem Res; 2012 Aug; 45(8):1331-44. PubMed ID: 22626010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism-Guided Development of Transition-Metal-Catalyzed C-N Bond-Forming Reactions Using Dioxazolones as the Versatile Amidating Source.
    Hong SY; Hwang Y; Lee M; Chang S
    Acc Chem Res; 2021 Jun; 54(11):2683-2700. PubMed ID: 33979133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology.
    Peng P; Schmidt RR
    Acc Chem Res; 2017 May; 50(5):1171-1183. PubMed ID: 28440624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inert C-H Bond Transformations Enabled by Organometallic Manganese Catalysis.
    Hu Y; Zhou B; Wang C
    Acc Chem Res; 2018 Mar; 51(3):816-827. PubMed ID: 29443496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation.
    Zhu W; Gunnoe TB
    Acc Chem Res; 2020 Apr; 53(4):920-936. PubMed ID: 32239913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.