BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33146788)

  • 1. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6.
    El-Housseiny GS; Aboshanab KM; Aboulwafa MM; Hassouna NA
    AMB Express; 2020 Nov; 10(1):201. PubMed ID: 33146788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa.
    Zhao F; Shi R; Ma F; Han S; Zhang Y
    Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application.
    Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F
    Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.
    Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR
    Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Di-rhamnolipid Production Using
    Zhou J; Xue R; Liu S; Xu N; Xin F; Zhang W; Jiang M; Dong W
    Front Bioeng Biotechnol; 2019; 7():245. PubMed ID: 31696112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10.
    Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I
    Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications.
    Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG
    Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Rare Mono-Rhamnolipid Congener Efficiently Produced by Recombinant
    Wang X; Li D; Yue S; Yuan Z; Li S
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of
    Haloi S; Sarmah S; Gogoi SB; Medhi T
    3 Biotech; 2020 Mar; 10(3):120. PubMed ID: 32117681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Yield Di-Rhamnolipid Production by
    Li Z; Zhang Y; Lin J; Wang W; Li S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil.
    He C; Dong W; Li J; Li Y; Huang C; Ma Y
    Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1.
    Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M
    J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa.
    Chen C; Sun N; Li D; Long S; Tang X; Xiao G; Wang L
    Environ Sci Pollut Res Int; 2018 May; 25(15):14934-14943. PubMed ID: 29549612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of rhamnolipids with different proportions of mono-rhamnolipids using crude glycerol and a comparison of their application potential for oil recovery from oily sludge.
    Zhao F; Jiang H; Sun H; Liu C; Han S; Zhang Y
    RSC Adv; 2019 Jan; 9(6):2885-2891. PubMed ID: 35518985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T
    J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.
    Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M
    Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprospecting of rhamnolipids production and optimization by an oil-degrading Pseudomonas sp. S2WE isolated from freshwater lake.
    Phulpoto IA; Wang Y; Qazi MA; Hu B; Ndayisenga F; Yu Z
    Bioresour Technol; 2021 Mar; 323():124601. PubMed ID: 33385627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.