BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33146855)

  • 1. Imidazole-based ionogel as room temperature benzene and formaldehyde sensor.
    Gil-González N; Benito-Lopez F; Castaño E; Morant-Miñana MC
    Mikrochim Acta; 2020 Nov; 187(12):638. PubMed ID: 33146855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a cataluminescence sensor for detecting benzene based on magnesium silicate hollow spheres.
    Wang Y; Li B; Wang Q; Shou Z
    Luminescence; 2015 Aug; 30(5):619-24. PubMed ID: 25349045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast response sensor to formaldehyde gas based on metal oxide.
    Choi NJ; Lee HK; Moon SE; Kim J; Yang WS
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5807-10. PubMed ID: 25936006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Rapid and Sensitive Formaldehyde Detection at Room Temperature Using a ZIF-8/MWCNT Nanocomposite.
    Jafari N; Zeinali S
    ACS Omega; 2020 Mar; 5(9):4395-4402. PubMed ID: 32175487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive and selective system of benzene detection based on a cataluminescence sensor.
    Li B; Zhang Y; Liu J; Xie X; Zou D; Li M; Liu J
    Luminescence; 2014 Jun; 29(4):332-7. PubMed ID: 23832690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Oxide@3D Hierarchical SnO
    Wan K; Yang J; Wang D; Wang X
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31861906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of volatile organic compounds released by wood furniture based on a cataluminescence test system.
    Miao Y; Deng F; Chen Y; Guan H
    Luminescence; 2016 Mar; 31(2):407-413. PubMed ID: 26239612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic liquid/poly(ionic liquid) membranes as non-flowing, conductive materials for electrochemical gas sensing.
    Doblinger S; Hay CE; Tomé LC; Mecerreyes D; Silvester DS
    Anal Chim Acta; 2022 Feb; 1195():339414. PubMed ID: 35090657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occupational exposure to volatile organic compounds and health risks in Colorado nail salons.
    Lamplugh A; Harries M; Xiang F; Trinh J; Hecobian A; Montoya LD
    Environ Pollut; 2019 Jun; 249():518-526. PubMed ID: 30933751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: comparison of measured and modelled exposure data.
    Bruinen de Bruin Y; Koistinen K; Kephalopoulos S; Geiss O; Tirendi S; Kotzias D
    Environ Sci Pollut Res Int; 2008 Jul; 15(5):417-30. PubMed ID: 18491156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated sensing layer of bacterial cellulose and polyethyleneimine to achieve high sensitivity of ST-cut quartz surface acoustic wave formaldehyde gas sensor.
    Wang JL; Guo YJ; Long GD; Tang YL; Tang QB; Zu XT; Ma JY; Du B; Torun H; Fu YQ
    J Hazard Mater; 2020 Apr; 388():121743. PubMed ID: 31836372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. National review of ambient air toxics observations.
    Strum M; Scheffe R
    J Air Waste Manag Assoc; 2016 Feb; 66(2):120-33. PubMed ID: 26230369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct monitoring of organic vapours with amperometric enzyme gas sensors.
    Hämmerle M; Hilgert K; Achmann S; Moos R
    Biosens Bioelectron; 2010 Feb; 25(6):1521-5. PubMed ID: 19926472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Concentration Analysis and Health Risk Assessment of Air Pollutants in Newly Decorated Public Places in Xi'an].
    Fan J; Fan H; Shen ZX; Dang WP; Zheng W; Wang ZH; Fu Y
    Huan Jing Ke Xue; 2021 May; 42(5):2153-2158. PubMed ID: 33884784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A p-n Heterojunction Based Pd/PdO@ZnO Organic Frameworks for High-Sensitivity Room-Temperature Formaldehyde Gas Sensor.
    Khan FU; Mehmood S; Liu S; Xu W; Shah MN; Zhao X; Ma J; Yang Y; Pan X
    Front Chem; 2021; 9():742488. PubMed ID: 34616714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One novel calix[4]arene based QCM sensor for sensitive, selective and high performance-sensing of formaldehyde at room temperature.
    Temel F
    Talanta; 2020 May; 211():120725. PubMed ID: 32070583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile organic compound gas sensor based on aluminum-doped zinc oxide with nanoparticle.
    Choi NJ; Lee HK; Moon SE; Yang WS; Kim J
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5481-4. PubMed ID: 23882782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoresistive Room-Temperature Sensing of Ammonia Using Zeolite Imidazole Framework and Reduced Graphene Oxide (ZIF-67/rGO) Composite.
    Garg N; Kumar M; Kumari N; Deep A; Sharma AL
    ACS Omega; 2020 Oct; 5(42):27492-27501. PubMed ID: 33134712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rare-earth-doped indium oxide nanosphere-based gas sensor for highly sensitive formaldehyde detection at a low temperature.
    Ma X; Zhu H; Yu L; Li X; Ye E; Li Z; Loh XJ; Wang S
    Nanoscale; 2023 Jan; 15(4):1609-1618. PubMed ID: 36602001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.