BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33147010)

  • 41. A visualization method for probing grain boundaries of single layer graphene via molecular beam epitaxy.
    Zhan L; Wan W; Zhu Z; Zhao Z; Zhang Z; Shih TM; Cai W
    Nanotechnology; 2017 Jul; 28(30):305601. PubMed ID: 28590942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001).
    Liu Y; Weinert M; Li L
    Phys Rev Lett; 2012 Mar; 108(11):115501. PubMed ID: 22540484
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Remote epitaxy of copper on sapphire through monolayer graphene buffer.
    Lu Z; Sun X; Xie W; Littlejohn A; Wang GC; Zhang S; Washington MA; Lu TM
    Nanotechnology; 2018 Nov; 29(44):445702. PubMed ID: 30124437
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene.
    Fernández-Garrido S; Ramsteiner M; Gao G; Galves LA; Sharma B; Corfdir P; Calabrese G; de Souza Schiaber Z; Pfüller C; Trampert A; Lopes JMJ; Brandt O; Geelhaar L
    Nano Lett; 2017 Sep; 17(9):5213-5221. PubMed ID: 28654280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatially dependent lattice deformations for dislocations at the edges of graphene.
    Gong C; He K; Robertson AW; Yoon E; Lee GD; Warner JH
    ACS Nano; 2015 Jan; 9(1):656-62. PubMed ID: 25496495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode.
    Chen L; Liu B; Ge M; Ma Y; Abbas AN; Zhou C
    ACS Nano; 2015 Aug; 9(8):8368-75. PubMed ID: 26221865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Study on Dislocation Mechanisms of Toughening in Cu-Graphene Nanolayered Composite.
    Lee S; Ghaffarian H; Kim W; Lee T; Han SM; Ryu S; Oh SH
    Nano Lett; 2022 Jan; 22(1):188-195. PubMed ID: 34941273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Implantation and atomic-scale investigation of self-interstitials in graphene.
    Lehtinen O; Vats N; Algara-Siller G; Knyrim P; Kaiser U
    Nano Lett; 2015 Jan; 15(1):235-41. PubMed ID: 25494293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface.
    Sangiovanni DG; Faccio R; Gueorguiev GK; Kakanakova-Georgieva A
    Phys Chem Chem Phys; 2022 Dec; 25(1):829-837. PubMed ID: 36511446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In Situ Scanning Transmission Electron Microscopy Study of MoS
    Lee Y; Lee J; Chung H; Kim J; Lee Z
    ACS Omega; 2021 Aug; 6(33):21623-21630. PubMed ID: 34471766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing structures of nanomaterials using advanced electron microscopy methods, including aberration-corrected electron microscopy at the Angstrom scale.
    Gai PL; Yoshida K; Shute C; Jia X; Walsh M; Ward M; Dresselhaus MS; Weertman JR; Boyes ED
    Microsc Res Tech; 2011 Jul; 74(7):664-70. PubMed ID: 20954265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil.
    Huang M; Biswal M; Park HJ; Jin S; Qu D; Hong S; Zhu Z; Qiu L; Luo D; Liu X; Yang Z; Liu Z; Huang Y; Lim H; Yoo WJ; Ding F; Wang Y; Lee Z; Ruoff RS
    ACS Nano; 2018 Jun; 12(6):6117-6127. PubMed ID: 29790339
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene.
    Wang WL; Santos EJ; Jiang B; Cubuk ED; Ophus C; Centeno A; Pesquera A; Zurutuza A; Ciston J; Westervelt R; Kaxiras E
    Nano Lett; 2014 Feb; 14(2):450-5. PubMed ID: 24447230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles.
    Lin PA; Gomez-Ballesteros JL; Burgos JC; Balbuena PB; Natarajan B; Sharma R
    J Catal; 2017 May; 349():149-155. PubMed ID: 28740274
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges.
    Liu L; Park J; Siegel DA; McCarty KF; Clark KW; Deng W; Basile L; Idrobo JC; Li AP; Gu G
    Science; 2014 Jan; 343(6167):163-7. PubMed ID: 24408431
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Atomistic Tomographic Study of Oxygen and Hydrogen Atoms and their Molecules in CVD Grown Graphene.
    Baik SI; Ma L; Kim YJ; Li B; Liu M; Isheim D; Yakobson BI; Ajayan PM; Seidman DN
    Small; 2015 Nov; 11(44):5968-74. PubMed ID: 26450564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates.
    Wu P; Zhang Y; Cui P; Li Z; Yang J; Zhang Z
    Phys Rev Lett; 2015 May; 114(21):216102. PubMed ID: 26066446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene.
    Kotakoski J; Brand C; Lilach Y; Cheshnovsky O; Mangler C; Arndt M; Meyer JC
    Nano Lett; 2015 Sep; 15(9):5944-9. PubMed ID: 26161575
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: evidence of low nitrogen doping and high charge transfer.
    Velez-Fort E; Mathieu C; Pallecchi E; Pigneur M; Silly MG; Belkhou R; Marangolo M; Shukla A; Sirotti F; Ouerghi A
    ACS Nano; 2012 Dec; 6(12):10893-900. PubMed ID: 23148722
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of the stacking order of curved few-layered graphene systems.
    Hayashi T; Muramatsu H; Shimamoto D; Fujisawa K; Tojo T; Muramoto Y; Yokomae T; Asaoka T; Kim YA; Terrones M; Endo M
    Nanoscale; 2012 Oct; 4(20):6419-24. PubMed ID: 22955157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.