These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 3314706)

  • 1. Osmotic significance of glycerol accumulation in exponentially growing yeasts.
    Reed RH; Chudek JA; Foster R; Gadd GM
    Appl Environ Microbiol; 1987 Sep; 53(9):2119-23. PubMed ID: 3314706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of intracellular osmotic pressure during the initial stages of salt stress in a salt-tolerant yeast, Zygosaccharomyces rouxii.
    Yagi T
    Microbios; 1992; 70(283):93-102. PubMed ID: 1501597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae.
    Meikle AJ; Reed RH; Gadd GM
    J Gen Microbiol; 1988 Nov; 134(11):3049-60. PubMed ID: 3076180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress.
    Larsson C; Gustafsson L
    Arch Microbiol; 1987 May; 147(4):358-63. PubMed ID: 3304183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 13C comparative nuclear magnetic resonance study of organic solute production and excretion by the yeasts Hansenula anomala and Saccharomyces cerevisiae in saline media.
    Bellinger Y; Larher F
    Can J Microbiol; 1988 May; 34(5):605-12. PubMed ID: 3061619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of salt tolerance. Production of glycerol and heat during growth of Debaryomyces hansenii.
    Gustafsson L; Norkrans B
    Arch Microbiol; 1976 Nov; 110(23):177-83. PubMed ID: 1015945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycerol production by yeasts under osmotic and sulfite stress.
    Petrovska B; Winkelhausen E; Kuzmanova S
    Can J Microbiol; 1999 Aug; 45(8):695-9. PubMed ID: 10528402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural abundance 13C-nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress.
    Meikle AJ; Chudek JA; Reed RH; Gadd GM
    FEMS Microbiol Lett; 1991 Aug; 66(2):163-7. PubMed ID: 1936945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential hypersaline stress response in Zygosaccharomyces rouxii complex yeasts: a physiological and transcriptional study.
    Solieri L; Vezzani V; Cassanelli S; Dakal TC; Pazzini J; Giudici P
    FEMS Yeast Res; 2016 Sep; 16(6):. PubMed ID: 27493145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene.
    Iwaki T; Tamai Y; Watanabe Y
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():241-248. PubMed ID: 10206704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression of glycerol 3-phosphate dehydrogenase gene [DhGPD1] from the osmotolerant yeast Debaryomyces hansenii in Saccharomyces cerevisiae.
    Thomé PE
    Curr Microbiol; 2005 Aug; 51(2):87-90. PubMed ID: 16049663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the GPD1 and GPP2 orthologues and glycerol retention during growth of Debaryomyces hansenii at high NaCl concentrations.
    Gori K; Mortensen HD; Arneborg N; Jespersen L
    Yeast; 2005 Nov; 22(15):1213-22. PubMed ID: 16278930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt tolerance and glycerol accumulation of a respiration-deficient mutant isolated from the petite-negative, salt-tolerant yeast Zygosaccharomyces rouxii.
    Yagi T; Nogami A; Nishi T
    FEMS Microbiol Lett; 1992 May; 71(3):289-93. PubMed ID: 1624129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains.
    Hernandez-Lopez MJ; Prieto JA; Randez-Gil F
    Antonie Van Leeuwenhoek; 2003; 84(2):125-34. PubMed ID: 14533716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae.
    Nevoigt E; Stahl U
    FEMS Microbiol Rev; 1997 Nov; 21(3):231-41. PubMed ID: 9451815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress.
    Hounsa CG; Brandt EV; Thevelein J; Hohmann S; Prior BA
    Microbiology (Reading); 1998 Mar; 144 ( Pt 3)():671-680. PubMed ID: 9534237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulphite.
    Pilkington BJ; Rose AH
    J Gen Microbiol; 1988 Oct; 134(10):2823-30. PubMed ID: 3076174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotic shock augments ethanol stress in Saccharomyces cerevisiae MTCC 2918.
    John GS; Gayathiri M; Rose C; Mandal AB
    Curr Microbiol; 2012 Feb; 64(2):100-5. PubMed ID: 22038037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Adaptation of yeasts to salt stress (review)].
    Andreishcheva EN; Zviagil'skaia RA
    Prikl Biokhim Mikrobiol; 1999; 35(3):243-56. PubMed ID: 10496006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation and release of osmolytes by yeasts during hypo-osmotic stress.
    Kayingo G; Kilian SG; Prior BA
    Arch Microbiol; 2001 Dec; 177(1):29-35. PubMed ID: 11797041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.