These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 3314706)

  • 21. Cell wall involvement in the glycerol response to high osmolarity in the halotolerant yeast Debaryomyces hansenii.
    Thomé PE
    Antonie Van Leeuwenhoek; 2007 Apr; 91(3):229-35. PubMed ID: 17072537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A non-ideal replacement for the Boyle van't Hoff equation.
    Prickett RC; Elliott JA; Hakda S; McGann LE
    Cryobiology; 2008 Oct; 57(2):130-6. PubMed ID: 18675796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+).
    André L; Hemming A; Adler L
    FEBS Lett; 1991 Jul; 286(1-2):13-7. PubMed ID: 1864360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of intracellular level of Na+, K+ and glycerol in Saccharomyces cerevisiae under osmotic stress.
    Sunder S; Singh AJ; Gill S; Singh B
    Mol Cell Biochem; 1996 May; 158(2):121-4. PubMed ID: 8817473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of nystatin on the release of glycerol from salt-stressed cells of the salt-tolerant yeast Zygosaccharomyces rouxii.
    Hosono K
    Arch Microbiol; 2000 Apr; 173(4):284-7. PubMed ID: 10816047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycerol and arabitol production by an intergeneric hybrid, PB2, obtained by protoplast fusion between Saccharomyces cerevisiae and Torulaspora delbrueckii.
    Lucca ME; Spencer JF; de Figueroa LI
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):472-6. PubMed ID: 12172612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrids obtained by protoplast fusion with a salt-tolerant yeast.
    Loray MA; Spencer JF; Spencer DM; de Figueroa LI
    J Ind Microbiol; 1995 Jun; 14(6):508-13. PubMed ID: 7662292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological basis for the high salt tolerance of Debaryomyces hansenii.
    Prista C; Almagro A; Loureiro-Dias MC; Ramos J
    Appl Environ Microbiol; 1997 Oct; 63(10):4005-9. PubMed ID: 9327565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The osmotic stress tolerance of basidiomycetous yeasts.
    Tekolo OM; McKenzie J; Botha A; Prior BA
    FEMS Yeast Res; 2010 Jun; 10(4):482-91. PubMed ID: 20214685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A procedure for enrichment and isolation of mutants of the salt-tolerant yeast Debaryomyces hansenii having altered glycerol metabolism.
    Morales C; André L; Adler L
    FEMS Microbiol Lett; 1990 May; 57(1-2):73-7. PubMed ID: 2379814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osmoresistant yeast Zygosaccharomyces rouxii: the two most studied wild-type strains (ATCC 2623 and ATCC 42981) differ in osmotolerance and glycerol metabolism.
    Pribylova L; de Montigny J; Sychrova H
    Yeast; 2007 Mar; 24(3):171-80. PubMed ID: 17351908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The co-action of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells.
    Papouskova K; Sychrova H
    Int J Food Microbiol; 2007 Aug; 118(1):1-7. PubMed ID: 17602771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities.
    Larsson C; Morales C; Gustafsson L; Adler L
    J Bacteriol; 1990 Apr; 172(4):1769-74. PubMed ID: 2318802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae.
    García MJ; Ríos G; Ali R; Bellés JM; Serrano R
    Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1125-1131. PubMed ID: 9141675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of CIF1 (GGS1/TPS1) in osmotic stress response in Saccharomyces cerevisiae.
    Hazell BW; Kletsas S; Nevalainen H; Attfield PV
    FEBS Lett; 1997 Sep; 414(2):353-8. PubMed ID: 9315717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two glycerol uptake systems contribute to the high osmotolerance of Zygosaccharomyces rouxii.
    Dušková M; Ferreira C; Lucas C; Sychrová H
    Mol Microbiol; 2015 Aug; 97(3):541-59. PubMed ID: 25943012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The osmotic responses of Saccharomyces cerevisiae in K(+)-depleted medium.
    Meikle AJ; Reed RH; Gadd GM
    FEMS Microbiol Lett; 1991 Feb; 62(1):89-93. PubMed ID: 2032627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently.
    Albertyn J; Hohmann S; Prior BA
    Curr Genet; 1994 Jan; 25(1):12-8. PubMed ID: 8082159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress.
    Seidl V; Seiboth B; Karaffa L; Kubicek CP
    Fungal Genet Biol; 2004 Dec; 41(12):1132-40. PubMed ID: 15531216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.