BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33147278)

  • 1. Toward in vivo-relevant hERG safety assessment and mitigation strategies based on relationships between non-equilibrium blocker binding, three-dimensional channel-blocker interactions, dynamic occupancy, dynamic exposure, and cellular arrhythmia.
    Wan H; Selvaggio G; Pearlstein RA
    PLoS One; 2020; 15(11):e0234946. PubMed ID: 33147278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-EM Structure of K
    Asai T; Adachi N; Moriya T; Oki H; Maru T; Kawasaki M; Suzuki K; Chen S; Ishii R; Yonemori K; Igaki S; Yasuda S; Ogasawara S; Senda T; Murata T
    Structure; 2021 Mar; 29(3):203-212.e4. PubMed ID: 33450182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural implications of hERG K
    Helliwell MV; Zhang Y; El Harchi A; Du C; Hancox JC; Dempsey CE
    J Biol Chem; 2018 May; 293(18):7040-7057. PubMed ID: 29545312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM Structure of the Open Human Ether-à-go-go-Related K
    Wang W; MacKinnon R
    Cell; 2017 Apr; 169(3):422-430.e10. PubMed ID: 28431243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of Dynamic Occupancy, Binding Kinetics, and Channel Gating Kinetics for hERG Blocker Safety Assessment and Mitigation.
    Pearlstein RA; MacCannell KA; Erdemli G; Yeola S; Helmlinger G; Hu QY; Farid R; Egan W; Whitebread S; Springer C; Beck J; Wang HR; Maciejewski M; Urban L; Duca JS
    Curr Top Med Chem; 2016; 16(16):1792-818. PubMed ID: 26975508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a Structural View of Drug Binding to hERG K
    Vandenberg JI; Perozo E; Allen TW
    Trends Pharmacol Sci; 2017 Oct; 38(10):899-907. PubMed ID: 28711156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of hERG Activation by Its Blocker: A Mechanism to Reduce Drug-Induced Proarrhythmic Risk.
    Furutani K
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic modeling of dynamic drug-hERG channel interactions using three voltage protocols and machine learning techniques: A simulation study.
    Escobar F; Gomis-Tena J; Saiz J; Romero L
    Comput Methods Programs Biomed; 2022 Nov; 226():107148. PubMed ID: 36170760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing Molecular Determinants of hERG Blocker and Activator Binding.
    Dickson CJ; Velez-Vega C; Duca JS
    J Chem Inf Model; 2020 Jan; 60(1):192-203. PubMed ID: 31880933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological characterization of the modified hERG
    Zhang Y; Dempsey CE; Hancox JC
    Physiol Rep; 2020 Oct; 8(20):e14568. PubMed ID: 33091232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of the chemical block of human ether-a-go-go-related gene (hERG) K+ current.
    Inanobe A; Kamiya N; Murakami S; Fukunishi Y; Nakamura H; Kurachi Y
    J Physiol Sci; 2008 Dec; 58(7):459-70. PubMed ID: 19032804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The low-potency, voltage-dependent HERG blocker propafenone--molecular determinants and drug trapping.
    Witchel HJ; Dempsey CE; Sessions RB; Perry M; Milnes JT; Hancox JC; Mitcheson JS
    Mol Pharmacol; 2004 Nov; 66(5):1201-12. PubMed ID: 15308760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel hypothesis for the binding mode of HERG channel blockers.
    Choe H; Nah KH; Lee SN; Lee HS; Lee HS; Jo SH; Leem CH; Jang YJ
    Biochem Biophys Res Commun; 2006 May; 344(1):72-8. PubMed ID: 16616004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications.
    Thomas D; Karle CA; Kiehn J
    Curr Pharm Des; 2006; 12(18):2271-83. PubMed ID: 16787254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interaction of eag domains and cyclic nucleotide-binding homology domains regulate deactivation gating in hERG channels.
    Gianulis EC; Liu Q; Trudeau MC
    J Gen Physiol; 2013 Oct; 142(4):351-66. PubMed ID: 24043860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New potential binding determinant for hERG channel inhibitors.
    Saxena P; Zangerl-Plessl EM; Linder T; Windisch A; Hohaus A; Timin E; Hering S; Stary-Weinzinger A
    Sci Rep; 2016 Apr; 6():24182. PubMed ID: 27067805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug block of the hERG potassium channel: insight from modeling.
    Stansfeld PJ; Gedeck P; Gosling M; Cox B; Mitcheson JS; Sutcliffe MJ
    Proteins; 2007 Aug; 68(2):568-80. PubMed ID: 17444521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two mutations at different positions in the CNBH domain of the hERG channel accelerate deactivation and impair the interaction with the EAG domain.
    Kume S; Shimomura T; Tateyama M; Kubo Y
    J Physiol; 2018 Oct; 596(19):4629-4650. PubMed ID: 30086184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitation of
    Furutani K; Tsumoto K; Chen IS; Handa K; Yamakawa Y; Sack JT; Kurachi Y
    J Gen Physiol; 2019 Feb; 151(2):214-230. PubMed ID: 30674563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lidoflazine is a high affinity blocker of the HERG K(+)channel.
    Ridley JM; Dooley PC; Milnes JT; Witchel HJ; Hancox JC
    J Mol Cell Cardiol; 2004 May; 36(5):701-5. PubMed ID: 15135665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.