These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33147292)

  • 1. Mitogen activated protein kinase (MAPK)-regulated genes with predicted signal peptides function in the Glycine max defense response to the root pathogenic nematode Heterodera glycines.
    Niraula PM; Sharma K; McNeece BT; Troell HA; Darwish O; Alkharouf NW; Lawrence KS; Klink VP
    PLoS One; 2020; 15(11):e0241678. PubMed ID: 33147292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines.
    McNeece BT; Sharma K; Lawrence GW; Lawrence KS; Klink VP
    Plant Physiol Biochem; 2019 Apr; 137():25-41. PubMed ID: 30711881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The central circadian regulator CCA1 functions in Glycine max during defense to a root pathogen, regulating the expression of genes acting in effector triggered immunity (ETI) and cell wall metabolism.
    Niraula PM; McNeece BT; Sharma K; Alkharouf NW; Lawrence KS; Klink VP
    Plant Physiol Biochem; 2022 Aug; 185():198-220. PubMed ID: 35704989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines.
    Pant SR; Krishnavajhala A; McNeece BT; Lawrence GW; Klink VP
    Plant Signal Behav; 2015; 10(1):e977737. PubMed ID: 25530246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved oligomeric Golgi (COG) complex genes functioning in defense are expressed in root cells undergoing a defense response to a pathogenic infection and exhibit regulation my MAPKs.
    Klink VP; Darwish O; Alkharouf NW; Lawaju BR; Khatri R; Lawrence KS
    PLoS One; 2021; 16(8):e0256472. PubMed ID: 34437620
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Khatri R; Pant SR; Sharma K; Niraula PM; Lawaju BR; Lawrence KS; Alkharouf NW; Klink VP
    Front Plant Sci; 2022; 13():842597. PubMed ID: 35599880
    [No Abstract]   [Full Text] [Related]  

  • 7. A Glycine max homolog of NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) alters defense gene expression while functioning during a resistance response to different root pathogens in different genetic backgrounds.
    McNeece BT; Pant SR; Sharma K; Niruala P; Lawrence GW; Klink VP
    Plant Physiol Biochem; 2017 May; 114():60-71. PubMed ID: 28273511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syncytium gene expression in Glycine max([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines.
    Klink VP; Hosseini P; Matsye PD; Alkharouf NW; Matthews BF
    Plant Physiol Biochem; 2010; 48(2-3):176-93. PubMed ID: 20138530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exocyst components promote an incompatible interaction between Glycine max (soybean) and Heterodera glycines (the soybean cyst nematode).
    Sharma K; Niraula PM; Troell HA; Adhikari M; Alshehri HA; Alkharouf NW; Lawrence KS; Klink VP
    Sci Rep; 2020 Sep; 10(1):15003. PubMed ID: 32929168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine max polygalacturonase inhibiting protein 11 (GmPGIP11) functions in the root to suppress Heterodera glycines parasitism.
    Acharya S; Troell HA; Billingsley RL; Lawrence KS; McKirgan DS; Alkharouf NW; Klink VP
    Plant Physiol Biochem; 2024 Aug; 213():108755. PubMed ID: 38875777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines.
    Niraula PM; Zhang X; Jeremic D; Lawrence KS; Klink VP
    PLoS One; 2021; 16(1):e0244305. PubMed ID: 33444331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina.
    Lawaju BR; Lawrence KS; Lawrence GW; Klink VP
    Plant Physiol Biochem; 2018 Aug; 129():331-348. PubMed ID: 29936240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection.
    Li S; Chen Y; Zhu X; Wang Y; Jung KH; Chen L; Xuan Y; Duan Y
    J Plant Physiol; 2018 Jan; 220():96-104. PubMed ID: 29169106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode).
    Klink VP; Hosseini P; Matsye P; Alkharouf NW; Matthews BF
    Plant Mol Biol; 2009 Dec; 71(6):525-67. PubMed ID: 19787434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heterologous expression of conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs suppresses Meloidogyne incognita parasitism in Gossypium hirsutum (upland cotton).
    Klink VP; Alkharouf NW; Lawrence KS; Lawaju BR; Sharma K; Niraula PM; McNeece BT
    Transgenic Res; 2022 Oct; 31(4-5):457-487. PubMed ID: 35763120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response.
    Hu Y; You J; Li C; Pan F; Wang C
    Plant Sci; 2019 Dec; 289():110271. PubMed ID: 31623793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulation of two α-endo-β-1,4-glucanase genes, AtCel6 and GmCel7, reduces susceptibility to Heterodera glycines in soybean roots.
    Woo MO; Beard H; MacDonald MH; Brewer EP; Youssef RM; Kim H; Matthews BF
    Mol Plant Pathol; 2014 Dec; 15(9):927-39. PubMed ID: 24844661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells.
    Kandoth PK; Ithal N; Recknor J; Maier T; Nettleton D; Baum TJ; Mitchum MG
    Plant Physiol; 2011 Apr; 155(4):1960-75. PubMed ID: 21335526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines.
    Pant SR; Matsye PD; McNeece BT; Sharma K; Krishnavajhala A; Lawrence GW; Klink VP
    Plant Mol Biol; 2014 May; 85(1-2):107-21. PubMed ID: 24452833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection.
    Klink VP; Overall CC; Alkharouf NW; MacDonald MH; Matthews BF
    Planta; 2007 Nov; 226(6):1423-47. PubMed ID: 17653570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.