BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 33147552)

  • 1. Transition metal catalysts for the bioorthogonal synthesis of bioactive agents.
    van de L'Isle MON; Ortega-Liebana MC; Unciti-Broceta A
    Curr Opin Chem Biol; 2021 Apr; 61():32-42. PubMed ID: 33147552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications.
    Huang R; Hirschbiegel CM; Lehot V; Liu L; Cicek YA; Rotello VM
    Adv Mater; 2024 Mar; 36(10):e2300943. PubMed ID: 37042795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts.
    Tonga GY; Jeong Y; Duncan B; Mizuhara T; Mout R; Das R; Kim ST; Yeh YC; Yan B; Hou S; Rotello VM
    Nat Chem; 2015 Jul; 7(7):597-603. PubMed ID: 26100809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed transition metal catalysts for intracellular organic synthesis.
    Bai Y; Chen J; Zimmerman SC
    Chem Soc Rev; 2018 Mar; 47(5):1811-1821. PubMed ID: 29367988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in controllable bioorthogonal catalysis for prodrug activation.
    Liu X; Huang T; Chen Z; Yang H
    Chem Commun (Camb); 2023 Oct; 59(84):12548-12559. PubMed ID: 37791560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ activation of therapeutics through bioorthogonal catalysis.
    Wang W; Zhang X; Huang R; Hirschbiegel CM; Wang H; Ding Y; Rotello VM
    Adv Drug Deliv Rev; 2021 Sep; 176():113893. PubMed ID: 34333074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal catalysis in the mitochondria of living cells.
    Tomás-Gamasa M; Martínez-Calvo M; Couceiro JR; Mascareñas JL
    Nat Commun; 2016 Sep; 7():12538. PubMed ID: 27600651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing metal-free catalysts by mimicking transition-metal pincer templates.
    Lu G; Li H; Zhao L; Huang F; Schleyer Pv; Wang ZX
    Chemistry; 2011 Feb; 17(7):2038-43. PubMed ID: 21294173
    [No Abstract]   [Full Text] [Related]  

  • 9. Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups.
    Völker T; Meggers E
    Curr Opin Chem Biol; 2015 Apr; 25():48-54. PubMed ID: 25561021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis with complexes containing stereogenic metal centers.
    Kündig EP
    Chimia (Aarau); 2014; 68(5):312-4. PubMed ID: 24983806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterial-based bioorthogonal nanozymes for biological applications.
    Fedeli S; Im J; Gopalakrishnan S; Elia JL; Gupta A; Kim D; Rotello VM
    Chem Soc Rev; 2021 Dec; 50(24):13467-13480. PubMed ID: 34787131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in First-Row Transition Metal/Chiral Phosphoric Acid Combined Catalysis.
    Fang GC; Cheng YF; Yu ZL; Li ZL; Liu XY
    Top Curr Chem (Cham); 2019 Aug; 377(5):23. PubMed ID: 31463700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid Metal as Bioinspired and Unusual Modulator in Bioorthogonal Catalysis for Tumor Inhibition Therapy.
    Zhang L; Sang Y; Liu Z; Wang W; Liu Z; Deng Q; You Y; Ren J; Qu X
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202218159. PubMed ID: 36578232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New directions in supramolecular transition metal catalysis.
    Wilkinson MJ; van Leeuwen PW; Reek JN
    Org Biomol Chem; 2005 Jul; 3(13):2371-83. PubMed ID: 15976851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Activation of Anticancer Therapeutics Using Polymeric Bioorthogonal Nanocatalysts.
    Zhang X; Landis RF; Keshri P; Cao-Milán R; Luther DC; Gopalakrishnan S; Liu Y; Huang R; Li G; Malassiné M; Uddin I; Rondon B; Rotello VM
    Adv Healthc Mater; 2021 Mar; 10(5):e2001627. PubMed ID: 33314745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand field theory and the origin of life as an emergent feature of the periodic table of elements.
    Morowitz HJ; Srinivasan V; Smith E
    Biol Bull; 2010 Aug; 219(1):1-6. PubMed ID: 20813983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emergence of transition-metal-mediated hydrothiolation of unsaturated carbon-carbon bonds: a mechanistic outlook.
    Castarlenas R; Di Giuseppe A; Pérez-Torrente JJ; Oro LA
    Angew Chem Int Ed Engl; 2013 Jan; 52(1):211-22. PubMed ID: 23212844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radicals in transition metal catalyzed reactions? transition metal catalyzed radical reactions? a fruitful interplay anyway: part 1. Radical catalysis by group 4 to group 7 elements.
    Jahn U
    Top Curr Chem; 2012; 320():121-89. PubMed ID: 22025066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radicals in transition metal catalyzed reactions? transition metal catalyzed radical reactions?: a fruitful interplay anyway: part 3: catalysis by group 10 and 11 elements and bimetallic catalysis.
    Jahn U
    Top Curr Chem; 2012; 320():323-451. PubMed ID: 22143611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition metal-carboryne complexes: synthesis, bonding, and reactivity.
    Qiu Z; Ren S; Xie Z
    Acc Chem Res; 2011 Apr; 44(4):299-309. PubMed ID: 21395260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.