These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33147788)

  • 21. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height.
    Liu Y; Feng H; Yue J; Jin X; Li Z; Yang G
    Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lessons from the history of Agave: ecological and cultural context for valuation of CAM.
    Davis SC; Ortiz-Cano HG
    Ann Bot; 2023 Nov; 132(4):819-833. PubMed ID: 37279950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic and Morphological Differentiation of Spirit Producing
    Cabrera-Toledo D; Mendoza-Galindo E; Larranaga N; Herrera-Estrella A; Vásquez-Cruz M; Hernández-Hernández T
    Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles.
    Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H
    J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform.
    Zhou C; Ye H; Hu J; Shi X; Hua S; Yue J; Xu Z; Yang G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Agave: a natural renewable resource with multiple applications.
    Pérez-Zavala ML; Hernández-Arzaba JC; Bideshi DK; Barboza-Corona JE
    J Sci Food Agric; 2020 Dec; 100(15):5324-5333. PubMed ID: 32535922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AI-PUCMDL: artificial intelligence assisted plant counting through unmanned aerial vehicles in India's mountainous regions.
    Thakur D; Srinivasan S
    Environ Monit Assess; 2024 Apr; 196(4):406. PubMed ID: 38561525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Irritant contact dermatitis caused by needle-like calcium oxalate crystals, raphides, in Agave tequilana among workers in tequila distilleries and agave plantations.
    Salinas ML; Ogura T; Soffchi L
    Contact Dermatitis; 2001 Feb; 44(2):94-6. PubMed ID: 11205412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular structures of fructans from Agave tequilana Weber var. azul.
    Lopez MG; Mancilla-Margalli NA; Mendoza-Diaz G
    J Agric Food Chem; 2003 Dec; 51(27):7835-40. PubMed ID: 14690361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of Maillard compounds from inulin during the thermal processing of Agave tequilana Weber Var. azul.
    Mancilla-Margalli NA; López MG
    J Agric Food Chem; 2002 Feb; 50(4):806-12. PubMed ID: 11829648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles.
    Lin L; Yang Y; Cheng H; Chen X
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a Predictive Model for Agave Prices Employing Environmental, Economic, and Social Factors: Towards a Planned Supply Chain for Agave-Tequila Industry.
    Warren-Vega WM; Aguilar-Hernández DE; Zárate-Guzmán AI; Campos-Rodríguez A; Romero-Cano LA
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process.
    Pinal L; Cornejo E; Arellano M; Herrera E; Nuñez L; Arrizon J; Gschaedler A
    J Ind Microbiol Biotechnol; 2009 May; 36(5):655-61. PubMed ID: 19238469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vehicle Counting Based on Vehicle Detection and Tracking from Aerial Videos.
    Xiang X; Zhai M; Lv N; El Saddik A
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multivariate analysis of FTIR and ion chromatographic data for the quality control of tequila.
    Lachenmeier DW; Richling E; López MG; Frank W; Schreier P
    J Agric Food Chem; 2005 Mar; 53(6):2151-7. PubMed ID: 15769149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aberrant meiotic behavior in Agave tequilana Weber var. azul.
    Ruvalcaba-Ruiz D; Rodríguez-Garay B
    BMC Plant Biol; 2002 Oct; 2():10. PubMed ID: 12396234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unmanned aerial vehicle (UAV) images of road vehicles dataset.
    Mustafa NE; Alizadeh F
    Data Brief; 2024 Jun; 54():110264. PubMed ID: 38516279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.