These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33147788)

  • 41. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Data on three-year flowering intensity monitoring in an apple orchard: A collection of RGB images acquired from unmanned aerial vehicles.
    Zhang C; Valente J; Wang W; van Dalfsen P; de Jong PF; Rijk B; Kooistra L
    Data Brief; 2023 Aug; 49():109356. PubMed ID: 37492231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.
    Diaz-Varela RA; Zarco-Tejada PJ; Angileri V; Loudjani P
    J Environ Manage; 2014 Feb; 134():117-26. PubMed ID: 24473345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Multi-Feature and Multi-Level Matching Algorithm Using Aerial Image and AIS for Vessel Identification.
    Xiu S; Wen Y; Yuan H; Xiao C; Zhan W; Zou X; Zhou C; Shah SC
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884771
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring.
    Zhang L; Niu Y; Zhang H; Han W; Li G; Tang J; Peng X
    Front Plant Sci; 2019; 10():1270. PubMed ID: 31649715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Agave Fructans in Oaxaca's Emblematic Specimens:
    Márquez-López RE; Santiago-García PA; López MG
    Plants (Basel); 2022 Jul; 11(14):. PubMed ID: 35890468
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pulp and paper from blue agave waste from tequila production.
    Idarraga G; Ramos J; Zuñiga V; Sahin T; Young RA
    J Agric Food Chem; 1999 Oct; 47(10):4450-5. PubMed ID: 10552832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles.
    Gao D; Sun Q; Hu B; Zhang S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182732
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How to awaken a sleeping giant: antagonistic expression of Flowering locus T homologs and elements of the age-related pathway are associated with the flowering transition in Agave tequilana.
    Hernández-Soriano L; Gálvez-Sandre L; Ávila de Dios E; Simpson J
    Plant Reprod; 2024 Jun; 37(2):111-132. PubMed ID: 38082036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rice Plant Counting, Locating, and Sizing Method Based on High-Throughput UAV RGB Images.
    Bai X; Liu P; Cao Z; Lu H; Xiong H; Yang A; Cai Z; Wang J; Yao J
    Plant Phenomics; 2023; 5():0020. PubMed ID: 37040495
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging.
    Zhao X; Yuan Y; Song M; Ding Y; Lin F; Liang D; Zhang D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning.
    Lin Z; Guo W
    Front Plant Sci; 2020; 11():534853. PubMed ID: 32983210
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detecting Plant Stress Using Thermal and Optical Imagery From an Unoccupied Aerial Vehicle.
    Stutsel B; Johansen K; Malbéteau YM; McCabe MF
    Front Plant Sci; 2021; 12():734944. PubMed ID: 34777418
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The estimation of crop emergence in potatoes by UAV RGB imagery.
    Li B; Xu X; Han J; Zhang L; Bian C; Jin L; Liu J
    Plant Methods; 2019; 15():15. PubMed ID: 30792752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential Obstacle Detection Using RGB to Depth Image Encoder-Decoder Network: Application to Unmanned Aerial Vehicles.
    Hachaj T
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning.
    Tian F; Vieira CC; Zhou J; Zhou J; Chen P
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas.
    Mesas-Carrascosa FJ; Notario García MD; Meroño de Larriva JE; García-Ferrer A
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.
    Rosnell T; Honkavaara E
    Sensors (Basel); 2012; 12(1):453-80. PubMed ID: 22368479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.