These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33147849)

  • 1. Thermomechanical Modeling of Microstructure Evolution Caused by Strain-Induced Crystallization.
    Aygün S; Klinge S
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33147849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermomechanical Characterization and Modeling of Cold-Drawing of Poly(ethylene Terephthalate).
    Oberer J; Schneider K; Majschak JP
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31766162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermomechanical Modeling of Amorphous Glassy Polymer Undergoing Large Viscoplastic Deformation: 3-Points Bending and Gas-Blow Forming.
    Wang J; Xu Y; Zhang W; Ren X
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30974786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of Second Law of Thermodynamics in Extended Procedures for the Exploitation of the Entropy Inequality: Korteweg Fluids and Strain-Gradient Elasticity as Examples.
    Cimmelli VA
    Entropy (Basel); 2024 Mar; 26(4):. PubMed ID: 38667847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers.
    Xiao R; Ghazaryan G; Tervoort TA; Nguyen TD
    Phys Rev E; 2017 Jun; 95(6-1):063001. PubMed ID: 28709187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers.
    Shardakov IN; Trufanov AN
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34577938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid.
    Georgiopoulos P; Kontou E; Meristoudi A; Pispas S; Chatzinikolaidou M
    J Biomater Appl; 2014 Nov; 29(5):662-74. PubMed ID: 25091863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Large Deformation and Velocity Impacts on the Mechanical Behavior of Filled Rubber: Microstructure-Based Constitutive Modeling and Mechanical Testing.
    Wei W; Yuan Y; Gao X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cyclic strain on the mechanical behavior of virgin ultra-high molecular weight polyethylene.
    Avanzini A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1242-56. PubMed ID: 21783133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subgrain Coalescence Simulation by Means of an Advanced Statistical Model of Inelastic Deformation.
    Kondratev N; Trusov P; Podsedertsev A; Baldin M
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Temperature-Dependent Viscoplasticity Model for the Hot Work Steel X38CrMoV5-3, Including Thermal and Cyclic Softening under Thermomechanical Fatigue Loading.
    Schlayer M; Warwas M; Seifert T
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Thermodynamically Consistent Model of Quasibrittle Elastic Damaged Materials Based on a Novel Helmholtz Potential and Dissipation Function.
    Kamińska I; Szwed A
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-scale method for modeling degradation of bioresorbable polyesters.
    Zhang T; Zhou S; Gao X; Yang Z; Sun L; Zhang D
    Acta Biomater; 2017 Mar; 50():462-475. PubMed ID: 28017865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy.
    Elmay W; Prima F; Gloriant T; Bolle B; Zhong Y; Patoor E; Laheurte P
    J Mech Behav Biomed Mater; 2013 Feb; 18():47-56. PubMed ID: 23246554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics and mechanics of stretch-induced crystallization in rubbers.
    Guo Q; Zaïri F; Guo X
    Phys Rev E; 2018 May; 97(5-1):052501. PubMed ID: 29906989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reassessment of the Dynamic Thermomechanical Conversion in Metals.
    Nieto-Fuentes JC; Osovski S; Venkert A; Rittel D
    Phys Rev Lett; 2019 Dec; 123(25):255502. PubMed ID: 31922796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Injection Molding of High-Density Polyethylene with Crystallization in Open-Source Software.
    Krebelj K; Krebelj A; Halilovič M; Mole N
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33396357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Macroscopic Thermomechanical Characterization of Multilayer Circuit Laminates for Advanced Electronic Packaging.
    Cheng HC; Jhu WY
    Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic Thermomechanical Loading of Epoxy Polymer: Modeling with Consideration of Stress Accumulation and Experimental Verification.
    Mishnev M; Korolev A; Zadorin A; Astashkin V
    Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive modeling of strain-induced crystallization in filled rubbers.
    Dargazany R; Khiêm VN; Poshtan EA; Itskov M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022604. PubMed ID: 25353499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.