BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33148164)

  • 1. Chitosan regulates metabolic balance, polyamine accumulation, and Na
    Geng W; Li Z; Hassan MJ; Peng Y
    BMC Plant Biol; 2020 Nov; 20(1):506. PubMed ID: 33148164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan (CTS) Alleviates Heat-Induced Leaf Senescence in Creeping Bentgrass by Regulating Chlorophyll Metabolism, Antioxidant Defense, and the Heat Shock Pathway.
    Huang C; Tian Y; Zhang B; Hassan MJ; Li Z; Zhu Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global Metabolites Reprogramming Induced by Spermine Contributing to Salt Tolerance in Creeping Bentgrass.
    Li Z; Cheng B; Liu W; Feng G; Zhao J; Zhang L; Peng Y
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic and Metabolomic Profilings Reveal Crucial Functions of γ-Aminobutyric Acid in Regulating Ionic, Water, and Metabolic Homeostasis in Creeping Bentgrass under Salt Stress.
    Li Z; Cheng B; Zeng W; Zhang X; Peng Y
    J Proteome Res; 2020 Feb; 19(2):769-780. PubMed ID: 31916766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass.
    Li Z; Cheng B; Peng Y; Zhang Y
    Plant Physiol Biochem; 2020 Dec; 157():185-194. PubMed ID: 33120110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyamines Metabolism Interacts with γ-Aminobutyric Acid, Proline and Nitrogen Metabolisms to Affect Drought Tolerance of Creeping Bentgrass.
    Tan M; Hassan MJ; Peng Y; Feng G; Huang L; Liu L; Liu W; Han L; Li Z
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric Oxide Signal, Nitrogen Metabolism, and Water Balance Affected by γ-Aminobutyric Acid (GABA) in Relation to Enhanced Tolerance to Water Stress in Creeping Bentgrass.
    Tang M; Li Z; Luo L; Cheng B; Zhang Y; Zeng W; Peng Y
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera).
    Li Z; Huang T; Tang M; Cheng B; Peng Y; Zhang X
    Plant Physiol Biochem; 2019 Dec; 145():216-226. PubMed ID: 31707249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation and stress-defensive key genes induced by γ-aminobutyric acid in association with tolerance to water stress in creeping bentgrass.
    Li Z; Tang M; Cheng B; Han L
    Plant Signal Behav; 2021 Mar; 16(3):1858247. PubMed ID: 33470151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.).
    Li Z; Baldwin CM; Hu Q; Liu H; Luo H
    Plant Cell Environ; 2010 Feb; 33(2):272-89. PubMed ID: 19930128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance.
    Xu C; Sibicky T; Huang B
    Plant Cell Rep; 2010 Jun; 29(6):595-615. PubMed ID: 20361191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).
    Li Z; Yu J; Peng Y; Huang B
    Physiol Plant; 2017 Jan; 159(1):42-58. PubMed ID: 27507681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.
    Yang Z; Chang Z; Sun L; Yu J; Huang B
    PLoS One; 2014; 9(12):e116283. PubMed ID: 25551443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).
    Li Z; Yu J; Peng Y; Huang B
    Sci Rep; 2016 Jul; 6():30338. PubMed ID: 27455877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na
    Wu X; Jia Q; Ji S; Gong B; Li J; Lü G; Gao H
    BMC Plant Biol; 2020 Oct; 20(1):465. PubMed ID: 33036565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis.
    Merewitz EB; Gianfagna T; Huang B
    J Exp Bot; 2011 Nov; 62(15):5311-33. PubMed ID: 21831843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera.
    Merewitz EB; Gianfagna T; Huang B
    J Exp Bot; 2011 Jan; 62(1):383-95. PubMed ID: 20841349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. γ-Aminobutyric acid (GABA) priming alleviates acid-aluminum toxicity to roots of creeping bentgrass via enhancements in antioxidant defense and organic metabolites remodeling.
    Zhou M; Huang C; Lin J; Yuan Y; Lin L; Zhou J; Li Z
    Planta; 2024 Jun; 260(1):33. PubMed ID: 38896325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. γ-Aminobutyric Acid Priming Alleviates Acid-Aluminum Toxicity to Creeping Bentgrass by Regulating Metabolic Homeostasis.
    Zhou M; Yuan Y; Lin J; Lin L; Zhou J; Li Z
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. γ-Aminobutyric Acid Enhances Heat Tolerance Associated with the Change of Proteomic Profiling in Creeping Bentgrass.
    Li Z; Zeng W; Cheng B; Huang T; Peng Y; Zhang X
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.