These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of fluoride on osteocyte-driven osteoclastic differentiation. Jiang N; Guo F; Xu W; Zhang Z; Jin H; Shi L; Zhang X; Gao J; Xu H Toxicology; 2020 Apr; 436():152429. PubMed ID: 32156525 [TBL] [Abstract][Full Text] [Related]
3. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. Wijenayaka AR; Kogawa M; Lim HP; Bonewald LF; Findlay DM; Atkins GJ PLoS One; 2011; 6(10):e25900. PubMed ID: 21991382 [TBL] [Abstract][Full Text] [Related]
4. Osteocyte network; a negative regulatory system for bone mass augmented by the induction of Rankl in osteoblasts and Sost in osteocytes at unloading. Moriishi T; Fukuyama R; Ito M; Miyazaki T; Maeno T; Kawai Y; Komori H; Komori T PLoS One; 2012; 7(6):e40143. PubMed ID: 22768243 [TBL] [Abstract][Full Text] [Related]
6. Pulsed electromagnetic fields regulate osteocyte apoptosis, RANKL/OPG expression, and its control of osteoclastogenesis depending on the presence of primary cilia. Wang P; Tang C; Wu J; Yang Y; Yan Z; Liu X; Shao X; Zhai M; Gao J; Liang S; Luo E; Jing D J Cell Physiol; 2019 Jul; 234(7):10588-10601. PubMed ID: 30422320 [TBL] [Abstract][Full Text] [Related]
7. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Davis HM; Pacheco-Costa R; Atkinson EG; Brun LR; Gortazar AR; Harris J; Hiasa M; Bolarinwa SA; Yoneda T; Ivan M; Bruzzaniti A; Bellido T; Plotkin LI Aging Cell; 2017 Jun; 16(3):551-563. PubMed ID: 28317237 [TBL] [Abstract][Full Text] [Related]
8. Alterations in osteocyte mediated osteoclastogenesis during estrogen deficiency and under ROCK-II inhibition: An in vitro study using a novel postmenopausal multicellular niche model. Simfia I; Schiavi J; McNamara LM Exp Cell Res; 2020 Jul; 392(1):112005. PubMed ID: 32330507 [TBL] [Abstract][Full Text] [Related]
9. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Peng S; Liu XS; Huang S; Li Z; Pan H; Zhen W; Luk KD; Guo XE; Lu WW Bone; 2011 Dec; 49(6):1290-8. PubMed ID: 21925296 [TBL] [Abstract][Full Text] [Related]
10. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. You L; Temiyasathit S; Lee P; Kim CH; Tummala P; Yao W; Kingery W; Malone AM; Kwon RY; Jacobs CR Bone; 2008 Jan; 42(1):172-9. PubMed ID: 17997378 [TBL] [Abstract][Full Text] [Related]
11. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Kennedy OD; Herman BC; Laudier DM; Majeska RJ; Sun HB; Schaffler MB Bone; 2012 May; 50(5):1115-22. PubMed ID: 22342796 [TBL] [Abstract][Full Text] [Related]
12. Exogenous iron caused osteocyte apoptosis, increased RANKL production, and stimulated bone resorption through oxidative stress in a murine model. Guo Z; Wu J; Hu Y; Zhou J; Li Q; Zhang Y; Zhang J; Yang L; Wang S; Zhang H; Yang J Chem Biol Interact; 2024 Aug; 399():111135. PubMed ID: 38971422 [TBL] [Abstract][Full Text] [Related]
13. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice. Kim SD; Kim HN; Lee JH; Jin WJ; Hwang SJ; Kim HH; Ha H; Lee ZH Biochem Pharmacol; 2013 Sep; 86(6):782-90. PubMed ID: 23928189 [TBL] [Abstract][Full Text] [Related]
14. Iron overload induced osteocytes apoptosis and led to bone loss in Hepcidin Ma J; Wang A; Zhang H; Liu B; Geng Y; Xu Y; Zuo G; Jia P Bone; 2022 Nov; 164():116511. PubMed ID: 35933095 [TBL] [Abstract][Full Text] [Related]
15. Osteocytes produce interferon-β as a negative regulator of osteoclastogenesis. Hayashida C; Ito J; Nakayachi M; Okayasu M; Ohyama Y; Hakeda Y; Sato T J Biol Chem; 2014 Apr; 289(16):11545-11555. PubMed ID: 24610813 [TBL] [Abstract][Full Text] [Related]
16. Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Piemontese M; Xiong J; Fujiwara Y; Thostenson JD; O'Brien CA Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E587-93. PubMed ID: 27460899 [TBL] [Abstract][Full Text] [Related]
17. Role of Osteocyte-PDL Crosstalk in Tooth Movement via SOST/Sclerostin. Odagaki N; Ishihara Y; Wang Z; Ei Hsu Hlaing E; Nakamura M; Hoshijima M; Hayano S; Kawanabe N; Kamioka H J Dent Res; 2018 Nov; 97(12):1374-1382. PubMed ID: 29863952 [TBL] [Abstract][Full Text] [Related]
18. Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKL-induced NFAT activation and calcium signaling. Liu C; Cao Z; Zhang W; Tickner J; Qiu H; Wang C; Chen K; Wang Z; Tan R; Dong S; Xu J J Cell Physiol; 2018 Nov; 233(11):8971-8983. PubMed ID: 29904917 [TBL] [Abstract][Full Text] [Related]
19. Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect. El-Masri BM; Andreasen CM; Laursen KS; Kofod VB; Dahl XG; Nielsen MH; Thomsen JS; Brüel A; Sørensen MS; Hansen LJ; Kim AS; Taylor VE; Massarotti C; McDonald MM; You X; Charles JF; Delaisse JM; Andersen TL Bone Res; 2024 Oct; 12(1):62. PubMed ID: 39424806 [TBL] [Abstract][Full Text] [Related]
20. Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. Ozaki Y; Koide M; Furuya Y; Ninomiya T; Yasuda H; Nakamura M; Kobayashi Y; Takahashi N; Yoshinari N; Udagawa N PLoS One; 2017; 12(9):e0184904. PubMed ID: 28937990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]