BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 33148423)

  • 1. Quantitative structure-property relationships for the calculation of the soil adsorption coefficient using machine learning algorithms with calculated chemical properties from open-source software.
    Kobayashi Y; Yoshida K
    Environ Res; 2021 May; 196():110363. PubMed ID: 33148423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Soil Adsorption Coefficient in Pesticides Using Physicochemical Properties and Molecular Descriptors by Machine Learning Models.
    Kobayashi Y; Uchida T; Yoshida K
    Environ Toxicol Chem; 2020 Jul; 39(7):1451-1459. PubMed ID: 32274829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical equivalence of prediction models of the soil sorption coefficient obtained using different log P algorithms.
    Olguin CJM; Sampaio SC; Dos Reis RR
    Chemosphere; 2017 Oct; 184():498-504. PubMed ID: 28622645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OPERA models for predicting physicochemical properties and environmental fate endpoints.
    Mansouri K; Grulke CM; Judson RS; Williams AJ
    J Cheminform; 2018 Mar; 10(1):10. PubMed ID: 29520515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSPR modelling of the soil sorption coefficient from training sets of different sizes.
    Olguin CJM; Sampaio SC; Dos Reis RR; Remor MB; Olguin CFA
    SAR QSAR Environ Res; 2019 May; 30(5):299-311. PubMed ID: 30982322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSPR models for prediction of the soil sorption coefficient (log KOC) values of 209 polychlorinated trans-azobenzenes (PCt-ABs).
    Wilczyńska-Piliszek AJ; Piliszek S; Falandysz J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(3):441-9. PubMed ID: 22320697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation-Independent QSPR Approach for the Soil Sorption Coefficient of Heterogeneous Compounds.
    Aranda JF; Garro Martinez JC; Castro EA; Duchowicz PR
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27527144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inclusion of molecular descriptors in predictive models improves pesticide soil-air partitioning estimates.
    Islam MN; Huang L; Siciliano SD
    Chemosphere; 2020 Jun; 248():126031. PubMed ID: 32032877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mordred: a molecular descriptor calculator.
    Moriwaki H; Tian YS; Kawashita N; Takagi T
    J Cheminform; 2018 Feb; 10(1):4. PubMed ID: 29411163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of different log P algorithms on the modeling of the soil sorption coefficient of nonionic pesticides.
    dos Reis RR; Sampaio SC; de Melo EB
    Water Res; 2013 Oct; 47(15):5751-9. PubMed ID: 23886539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals.
    Doucette WJ
    Environ Toxicol Chem; 2003 Aug; 22(8):1771-88. PubMed ID: 12924577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a QSPR Model of Organic Carbon Normalized Sorption Coefficients of Perfluorinated and Polyfluoroalkyl Substances.
    Jiang L; Xu Y; Zhang X; Xu B; Xu X; Ma Y
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on adsorption behavior of volatile and semivolatile organic vapors to air-dry soils based on QSPR methods.
    Liu H; Yao X; Liu M; Hu Z; Fan B
    Environ Pollut; 2007 May; 147(1):41-9. PubMed ID: 17240022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-Learning-Based Prediction of Plant Cuticle-Air Partition Coefficients for Organic Pollutants: Revealing Mechanisms from a Molecular Structure Perspective.
    Tao T; Tao C; Zhu T
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38543017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning transition temperatures from 2D structure.
    Sifain AE; Rice BM; Yalkowsky SH; Barnes BC
    J Mol Graph Model; 2021 Jun; 105():107848. PubMed ID: 33667863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning.
    Zang Q; Mansouri K; Williams AJ; Judson RS; Allen DG; Casey WM; Kleinstreuer NC
    J Chem Inf Model; 2017 Jan; 57(1):36-49. PubMed ID: 28006899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction.
    Gramatica P; Giani E; Papa E
    J Mol Graph Model; 2007 Mar; 25(6):755-66. PubMed ID: 16890002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.
    Daré JK; Silva CF; Freitas MP
    Ecotoxicol Environ Saf; 2017 Oct; 144():560-563. PubMed ID: 28688357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of molecular representations for lipophilicity quantitative structure-property relationships with results from the SAMPL6 logP Prediction Challenge.
    Lui R; Guan D; Matthews S
    J Comput Aided Mol Des; 2020 May; 34(5):523-534. PubMed ID: 31933037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.