BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3314869)

  • 1. Biochemical and immunochemical similarity between erythrocyte membrane aspartic proteinase and cathepsin E.
    Yamamoto K; Ueno E; Uemura H; Kato Y
    Biochem Biophys Res Commun; 1987 Oct; 148(1):267-72. PubMed ID: 3314869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte membrane acid proteinase (EMAP): sidedness and relation to cathepsin D.
    Yamamoto K; Takeda M; Yamamoto H; Tatsumi M; Kato Y
    J Biochem; 1985 Mar; 97(3):821-30. PubMed ID: 3926757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the aspartic proteinases from human erythrocyte membranes and gastric mucosa (slow-moving proteinase) as catalytically equivalent to cathepsin E.
    Jupp RA; Richards AD; Kay J; Dunn BM; Wyckoff JB; Samloff IM; Yamamoto K
    Biochem J; 1988 Sep; 254(3):895-8. PubMed ID: 3058118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An aspartic proteinase from human erythrocytes is immunochemically indistinguishable from a non-pepsin, electrophoretically slow moving proteinase from gastric mucosa.
    Tarasova NI; Szecsi PB; Foltmann B
    Biochim Biophys Acta; 1986 Jan; 880(1):96-100. PubMed ID: 3510671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, and catalytic and immunochemical properties of cathepsin D-like acid proteinase from rat erythrocytes.
    Takeda M; Ueno E; Kato Y; Yamamoto K
    J Biochem; 1986 Nov; 100(5):1269-77. PubMed ID: 3546279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies of two types of acid proteases from rat gastric mucosa and spleen.
    Muto N; Yamamoto M; Tani S
    J Biochem; 1987 May; 101(5):1069-75. PubMed ID: 3115966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristic distribution of cathepsin E which immunologically cross-reacts with the 86-kDa acid proteinase from rat gastric mucosa.
    Muto N; Yamamoto M; Tani S; Yonezawa S
    J Biochem; 1988 Apr; 103(4):629-32. PubMed ID: 3049564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of acid proteinase from human erythrocyte membranes.
    Yamamoto K; Marchesi VT
    Biochim Biophys Acta; 1984 Nov; 790(3):208-18. PubMed ID: 6386053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation mechanism of erythrocyte cathepsin E. evidence for the occurrence of the membrane-associated active enzyme.
    Ueno E; Sakai H; Kato Y; Yamamoto K
    J Biochem; 1989 Jun; 105(6):878-82. PubMed ID: 2670917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunochemical similarity between a gastric mucosa non-pepsin acid proteinase and neutrophil cathepsin E of the rat.
    Yonezawa S; Tanaka T; Muto N; Tani S
    Biochem Biophys Res Commun; 1987 May; 144(3):1251-6. PubMed ID: 3579957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and properties of a cathepsin D-like acid proteinase from rat gastric mucosa.
    Muto N; Arai KM; Tani S
    Biochim Biophys Acta; 1983 May; 745(1):61-9. PubMed ID: 6342679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of cathepsin E type acid proteinase from gastric mucosa of bullfrog, Rana catesbeiana.
    Inokuchi T; Kobayashi K; Horiuchi S
    J Biochem; 1994 Jan; 115(1):76-81. PubMed ID: 8188640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and immunohistochemical localization of aspartic proteinases in rat epidermis.
    Hara K; Fukuyama K; Sakai H; Yamamoto K; Epstein WL
    J Invest Dermatol; 1993 Apr; 100(4):394-9. PubMed ID: 8454902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of P-57, a serine proteinase, from human erythrocyte membranes, which cleaves both chains of human third component (C3) of complement.
    Charriaut-Marlangue C; Barel M; Frade R
    Biochem Biophys Res Commun; 1986 Nov; 140(3):1113-20. PubMed ID: 3535796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further studies on rat cathepsin E: subcellular localization and existence of the active subunit form.
    Yonezawa S; Fujii K; Maejima Y; Tamoto K; Mori Y; Muto N
    Arch Biochem Biophys; 1988 Nov; 267(1):176-83. PubMed ID: 3058036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a latent cysteine proteinase from ascitic fluid as a high molecular weight form of cathepsin B.
    Mort JS; Leduc MS; Recklies AD
    Biochim Biophys Acta; 1983 Feb; 755(3):369-75. PubMed ID: 6337648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-specific distribution of cathepsin E in mammalian blood cells.
    Yonezawa S; Nakamura K
    Biochim Biophys Acta; 1991 Jan; 1073(1):155-60. PubMed ID: 1991130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral serine proteinase and metalloproteinase strongly bound to human erythrocyte membrane.
    GaczyƄska M; Bartosz G
    Cytobios; 1993; 74(296):29-33. PubMed ID: 8330486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Immunochemical study of bovine spleen thiol proteinases: cathepsinS B, H and L].
    Lokshina LA; Tarkhanova IA; Lubkova ON; Golubeva NV; Gureeva TA
    Biull Eksp Biol Med; 1983 Oct; 96(10):50-3. PubMed ID: 6414550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Proteinases of small intestine enterocytes of swine. Purification and properties of aspartyl proteinase similar to cathepsin D].
    Zil'berman MI; Vorotyntseva TI
    Biokhimiia; 1985 Sep; 50(9):1453-62. PubMed ID: 3931702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.