These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mechanism of oxidative stress and Keap-1/Nrf2 signaling pathway in bronchopulmonary dysplasia. Ma D; Gao W; Liu J; Kong D; Zhang Y; Qian M Medicine (Baltimore); 2020 Jun; 99(26):e20433. PubMed ID: 32590729 [TBL] [Abstract][Full Text] [Related]
4. Effects of hyperoxia exposure on the expression of Nrf2 and heme oxygenase-1 in lung tissues of premature rats. Chu X; Zhang X; Gong X; Zhou H; Cai C Mol Cell Probes; 2020 Jun; 51():101529. PubMed ID: 32036037 [TBL] [Abstract][Full Text] [Related]
5. Autophagy inducer activates Nrf2-ARE pathway to attenuate aberrant alveolarization in neonatal rats with bronchopulmonary dysplasia. Zhao X; Shi Y; Zhang D; Tong X; Sun Y; Xue X; Fu J Life Sci; 2020 Jul; 252():117662. PubMed ID: 32298739 [TBL] [Abstract][Full Text] [Related]
6. ZJ01, a Small Molecule Inhibitor of the Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction, Reduces Hyperoxic Acute Lung Injury in a Mouse Model. Wan J; Lin S; Huang X; Li Q; Zeng L; Du S Med Sci Monit; 2020 May; 26():e920467. PubMed ID: 32437336 [TBL] [Abstract][Full Text] [Related]
7. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia. Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056 [TBL] [Abstract][Full Text] [Related]
8. Nrf2‑Keap1‑ARE‑NQO1 signaling attenuates hyperoxia‑induced lung cell injury by inhibiting apoptosis. Weng B; Zhang X; Chu X; Gong X; Cai C Mol Med Rep; 2021 Mar; 23(3):. PubMed ID: 33495821 [TBL] [Abstract][Full Text] [Related]
9. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication. Bozyk PD; Bentley JK; Popova AP; Anyanwu AC; Linn MD; Goldsmith AM; Pryhuber GS; Moore BB; Hershenson MB PLoS One; 2012; 7(2):e31336. PubMed ID: 22363622 [TBL] [Abstract][Full Text] [Related]
10. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia. Chao CM; Yahya F; Moiseenko A; Tiozzo C; Shrestha A; Ahmadvand N; El Agha E; Quantius J; Dilai S; Kheirollahi V; Jones M; Wilhem J; Carraro G; Ehrhardt H; Zimmer KP; Barreto G; Ahlbrecht K; Morty RE; Herold S; Abellar RG; Seeger W; Schermuly R; Zhang JS; Minoo P; Bellusci S J Pathol; 2017 Jan; 241(1):91-103. PubMed ID: 27770432 [TBL] [Abstract][Full Text] [Related]
11. The Role of Sphingolipid Signaling in Oxidative Lung Injury and Pathogenesis of Bronchopulmonary Dysplasia. Thomas JM; Sudhadevi T; Basa P; Ha AW; Natarajan V; Harijith A Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163176 [TBL] [Abstract][Full Text] [Related]
12. Recombinant CXCL17 Treatment Alleviates Hyperoxia-Induced Lung Apoptosis and Inflammation In Vivo and Vitro by Activating the AKT Pathway: A Possible Therapeutic Approach for Bronchopulmonary Dysplasia. Chen P; Cheng Y; Hu J; Fang R; Yang LQ Mol Biotechnol; 2024 Sep; 66(9):2349-2361. PubMed ID: 37710083 [TBL] [Abstract][Full Text] [Related]
13. N-acetyl-lysyltyrosylcysteine amide, a novel systems pharmacology agent, reduces bronchopulmonary dysplasia in hyperoxic neonatal rat pups. Teng RJ; Jing X; Martin DP; Hogg N; Haefke A; Konduri GG; Day BW; Naylor S; Pritchard KA Free Radic Biol Med; 2021 Apr; 166():73-89. PubMed ID: 33607217 [TBL] [Abstract][Full Text] [Related]
14. Airway Remodeling and Hyperreactivity in a Model of Bronchopulmonary Dysplasia and Their Modulation by IL-1 Receptor Antagonist. Royce SG; Nold MF; Bui C; Donovan C; Lam M; Lamanna E; Rudloff I; Bourke JE; Nold-Petry CA Am J Respir Cell Mol Biol; 2016 Dec; 55(6):858-868. PubMed ID: 27482635 [TBL] [Abstract][Full Text] [Related]
15. Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia. Ratner V; Slinko S; Utkina-Sosunova I; Starkov A; Polin RA; Ten VS Neonatology; 2009; 95(4):299-305. PubMed ID: 19052476 [TBL] [Abstract][Full Text] [Related]
17. Deletion of Keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation. Blake DJ; Singh A; Kombairaju P; Malhotra D; Mariani TJ; Tuder RM; Gabrielson E; Biswal S Am J Respir Cell Mol Biol; 2010 May; 42(5):524-36. PubMed ID: 19520915 [TBL] [Abstract][Full Text] [Related]
18. Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice. Cho HY; van Houten B; Wang X; Miller-DeGraff L; Fostel J; Gladwell W; Perrow L; Panduri V; Kobzik L; Yamamoto M; Bell DA; Kleeberger SR Antioxid Redox Signal; 2012 Oct; 17(8):1066-82. PubMed ID: 22400915 [TBL] [Abstract][Full Text] [Related]
19. Nrf2 protects against airway disorders. Cho HY; Kleeberger SR Toxicol Appl Pharmacol; 2010 Apr; 244(1):43-56. PubMed ID: 19646463 [TBL] [Abstract][Full Text] [Related]
20. Aurothioglucose does not improve alveolarization or elicit sustained Nrf2 activation in C57BL/6 models of bronchopulmonary dysplasia. Li Q; Li R; Wall SB; Dunigan K; Ren C; Jilling T; Rogers LK; Tipple TE Am J Physiol Lung Cell Mol Physiol; 2018 May; 314(5):L736-L742. PubMed ID: 29368550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]