BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33149263)

  • 1. Engineering cofactor supply and NADH-dependent D-galacturonic acid reductases for redox-balanced production of L-galactonate in Saccharomyces cerevisiae.
    Harth S; Wagner J; Sens T; Choe JY; Benz JP; Weuster-Botz D; Oreb M
    Sci Rep; 2020 Nov; 10(1):19021. PubMed ID: 33149263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-Galacturonic acid reduction by S. cerevisiae for L-galactonate production from extracted sugar beet press pulp hydrolysate.
    Wagner J; Schäfer D; von den Eichen N; Haimerl C; Harth S; Oreb M; Benz JP; Weuster-Botz D
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5795-5807. PubMed ID: 34268581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentative production of l-galactonate by using recombinant Saccharomyces cerevisiae containing the endogenous galacturonate reductase gene from Cryptococcus diffluens.
    Matsubara T; Hamada S; Wakabayashi A; Kishida M
    J Biosci Bioeng; 2016 Nov; 122(5):639-644. PubMed ID: 27259388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes.
    Benz JP; Protzko RJ; Andrich JM; Bauer S; Dueber JE; Somerville CR
    Biotechnol Biofuels; 2014 Feb; 7(1):20. PubMed ID: 24502254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae.
    van Aalst ACA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):112. PubMed ID: 36253796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the Aldo-Keto Reductase Responsible for d-Galacturonic Acid Conversion to l-Galactonate in
    Rippert D; Linguardo F; Perpelea A; Klein M; Nevoigt E
    J Fungi (Basel); 2021 Oct; 7(11):. PubMed ID: 34829203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a D-galacturonate reductase efficiently using NADH as a cofactor.
    Peltonen KE; Richard P
    Biotechnol Rep (Amst); 2022 Sep; 35():e00744. PubMed ID: 35711324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.
    Hou J; Lages NF; Oldiges M; Vemuri GN
    Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox cofactor metabolism in Saccharomyces cerevisiae and its impact on the production of alcoholic fermentation end-products.
    Duncan JD; Setati ME; Divol B
    Food Res Int; 2023 Jan; 163():112276. PubMed ID: 36596186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.
    Salusjärvi L; Kaunisto S; Holmström S; Vehkomäki ML; Koivuranta K; Pitkänen JP; Ruohonen L
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1383-92. PubMed ID: 24113892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae.
    Bloem A; Sanchez I; Dequin S; Camarasa C
    Appl Environ Microbiol; 2016 Jan; 82(1):174-83. PubMed ID: 26475113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.
    Celton M; Goelzer A; Camarasa C; Fromion V; Dequin S
    Metab Eng; 2012 Jul; 14(4):366-79. PubMed ID: 22709677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards valorization of pectin-rich agro-industrial residues: Engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol.
    Perpelea A; Wijaya AW; Martins LC; Rippert D; Klein M; Angelov A; Peltonen K; Teleki A; Liebl W; Richard P; Thevelein JM; Takors R; Sá-Correia I; Nevoigt E
    Metab Eng; 2022 Jan; 69():1-14. PubMed ID: 34648971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.
    Jo JH; Oh SY; Lee HS; Park YC; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cofactor engineering to regulate NAD
    Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M
    Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The introduction of the fungal D-galacturonate pathway enables the consumption of D-galacturonic acid by Saccharomyces cerevisiae.
    Biz A; Sugai-Guérios MH; Kuivanen J; Maaheimo H; Krieger N; Mitchell DA; Richard P
    Microb Cell Fact; 2016 Aug; 15(1):144. PubMed ID: 27538689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.