BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33149264)

  • 1. Evolution of chaperome gene expression and regulatory elements in the antarctic notothenioid fishes.
    Bilyk KT; Zhuang X; Vargas-Chacoff L; Cheng CC
    Heredity (Edinb); 2021 Mar; 126(3):424-441. PubMed ID: 33149264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish.
    Bilyk KT; Vargas-Chacoff L; Cheng CC
    BMC Evol Biol; 2018 Sep; 18(1):143. PubMed ID: 30231868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes.
    Bogan SN; Place SP
    BMC Evol Biol; 2019 Nov; 19(1):205. PubMed ID: 31694524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes.
    Place SP; Zippay ML; Hofmann GE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R429-36. PubMed ID: 15117724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish.
    Chen Z; Cheng CH; Zhang J; Cao L; Chen L; Zhou L; Jin Y; Ye H; Deng C; Dai Z; Xu Q; Hu P; Sun S; Shen Y; Chen L
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12944-9. PubMed ID: 18753634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold-Driven Hemoglobin Evolution in Antarctic Notothenioid Fishes Prior to Hemoglobin Gene Loss in White-Blooded Icefishes.
    Desvignes T; Bista I; Herrera K; Landes A; Postlethwait JH
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37879119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie
    Cheng CC; Rivera-Colón AG; Minhas BF; Wilson L; Rayamajhi N; Vargas-Chacoff L; Catchen JM
    Genes (Basel); 2023 May; 14(6):. PubMed ID: 37372376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes.
    Chen L; Lu Y; Li W; Ren Y; Yu M; Jiang S; Fu Y; Wang J; Peng S; Bilyk KT; Murphy KR; Zhuang X; Hune M; Zhai W; Wang W; Xu Q; Cheng CC
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30715292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL; Somero GN
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing Gene Copy Number of Heat Shock Protein Gene Families in the Emerald Rockcod,
    Tercero AD; Place SP
    Genes (Basel); 2020 Jul; 11(8):. PubMed ID: 32751814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable heat shock response in Antarctic biofouling serpulid worms.
    Nieva LV; Peck LS; Clark MS
    Cell Stress Chaperones; 2021 Nov; 26(6):945-954. PubMed ID: 34601709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    BMC Genomics; 2013 Sep; 14():634. PubMed ID: 24053439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    Mar Genomics; 2014 Dec; 18 Pt B():163-71. PubMed ID: 24999838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of 70 kDa heat shock proteins in antarctic and New Zealand notothenioid fish.
    Carpenter CM; Hofmann GE
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Feb; 125(2):229-38. PubMed ID: 10825695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii.
    Buckley BA; Place SP; Hofmann GE
    J Exp Biol; 2004 Oct; 207(Pt 21):3649-56. PubMed ID: 15371473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain and sense organ anatomy and histology of the Falkland Islands mullet, Eleginops maclovinus (Eleginopidae), the sister group of the Antarctic notothenioid fishes (Perciformes: Notothenioidei).
    Eastman JT; Lannoo MJ
    J Morphol; 2008 Jan; 269(1):84-103. PubMed ID: 17902153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.
    Xu Q; Cheng CH; Hu P; Ye H; Chen Z; Cao L; Chen L; Shen Y; Chen L
    Mol Biol Evol; 2008 Jun; 25(6):1099-112. PubMed ID: 18310660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.
    Shin SC; Kim SJ; Lee JK; Ahn DH; Kim MG; Lee H; Lee J; Kim BK; Park H
    PLoS One; 2012; 7(8):e43762. PubMed ID: 22916302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures?
    Beers JM; Jayasundara N
    J Exp Biol; 2015 Jun; 218(Pt 12):1834-45. PubMed ID: 26085661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolutionary puzzle solution for the origins of the partial loss of the Cτ2 exon in notothenioid fishes.
    Ametrano A; Gerdol M; Vitale M; Greco S; Oreste U; Coscia MR
    Fish Shellfish Immunol; 2021 Sep; 116():124-139. PubMed ID: 34038801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.