These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33149377)

  • 1. Multiscale modelling and homogenisation of fibre-reinforced hydrogels for tissue engineering.
    Chen MJ; Kimpton LS; Whiteley JP; Castilho M; Malda J; Please CP; Waters SL; Byrne HM
    Eur J Appl Math; 2020 Feb; 31(1):143-171. PubMed ID: 33149377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.
    Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ
    Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering.
    Schipani R; Nolan DR; Lally C; Kelly DJ
    Connect Tissue Res; 2020 Mar; 61(2):174-189. PubMed ID: 31495233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonwoven Reinforced Photocurable Poly(glycerol sebacate)-Based Hydrogels.
    Phillips M; Tronci G; Pask CM; Russell SJ
    Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds.
    Castilho M; Hochleitner G; Wilson W; van Rietbergen B; Dalton PD; Groll J; Malda J; Ito K
    Sci Rep; 2018 Jan; 8(1):1245. PubMed ID: 29352189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective equations governing an active poroelastic medium.
    Collis J; Brown DL; Hubbard ME; O'Dea RD
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160755. PubMed ID: 28293138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogenisation of the Local Thermal Conductivity in Injection-Moulded Short Fibre Reinforced Composites.
    Mokarizadehhaghighishirazi M; Buffel B; Lomov SV; Desplentere F
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume orientation: a practical solution to analyse the orientation of fibres in composite materials.
    DE Pascalis F; Nacucchi M
    J Microsc; 2019 Oct; 276(1):27-38. PubMed ID: 31541459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetronic(®)-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications.
    Sivaraman S; Ostendorff R; Fleishman B; Nagatomi J
    J Biomater Sci Polym Ed; 2015; 26(3):196-210. PubMed ID: 25495917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Governing Equations for Viscoelastic Composites.
    Miller L; Ramírez-Torres A; Rodríguez-Ramos R; Penta R
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow.
    Erdemir A; Bennetts C; Davis S; Reddy A; Sibole S
    Interface Focus; 2015 Apr; 5(2):20140081. PubMed ID: 25844153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multiscale stiffness of electrospun substrates and aspects of their mechanical biocompatibility.
    Zündel M; Ehret AE; Mazza E
    Acta Biomater; 2019 Jan; 84():146-158. PubMed ID: 30447336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor.
    Kallemeyn NA; Grosland NM; Pedersen DR; Martin JA; Brown TD
    Iowa Orthop J; 2006; 26():5-16. PubMed ID: 16789442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.
    Wahlquist JA; DelRio FW; Randolph MA; Aziz AH; Heveran CM; Bryant SJ; Neu CP; Ferguson VL
    Acta Biomater; 2017 Dec; 64():41-49. PubMed ID: 29037894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.
    Barkaoui A; Tlili B; Vercher-Martínez A; Hambli R
    Comput Methods Programs Biomed; 2016 Oct; 134():69-78. PubMed ID: 27480733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multiscale Modelling Approach for Estimating the Effect of Defects in Unidirectional Carbon Fiber Reinforced Polymer Composites.
    Antin KN; Laukkanen A; Andersson T; Smyl D; Vilaça P
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.