These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33149993)

  • 1. Au nanostar nanoparticle as a bio-imaging agent and its detection and visualization in biosystems.
    Perevedentseva E; Ali N; Lin YC; Karmenyan A; Chang CC; Bibikova O; Skovorodkin I; Prunskaite-Hyyryläinen R; Vainio SJ; Kinnunen M; Cheng CL
    Biomed Opt Express; 2020 Oct; 11(10):5872-5885. PubMed ID: 33149993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional plasmonic gold nanostars for cancer diagnostic and therapeutic applications.
    Pearl WG; Perevedentseva EV; Karmenyan AV; Khanadeev VA; Wu SY; Ma YR; Khlebtsov NG; Cheng CL
    J Biophotonics; 2022 Mar; 15(3):e202100264. PubMed ID: 34784104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Studies of Nanodiamond-Tissue Interaction: Skin Penetration and Localization.
    Perevedentseva E; Ali N; Karmenyan A; Skovorodkin I; Prunskaite-Hyyryläinen R; Vainio S; Cheng CL; Kinnunen M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31731700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time visualization of two-photon fluorescence lifetime imaging microscopy using a wavelength-tunable femtosecond pulsed laser.
    Ryu J; Kang U; Kim J; Kim H; Kang JH; Kim H; Sohn DK; Jeong JH; Yoo H; Gweon B
    Biomed Opt Express; 2018 Jul; 9(7):3449-3463. PubMed ID: 29984109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoclusters performing as contrast agents for non-invasive imaging of tissue-like phantoms
    Hada AM; Craciun AM; Astilean S
    Analyst; 2021 Nov; 146(23):7126-7130. PubMed ID: 34723292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing cellular uptake and tracking of differently shaped gelatin-coated gold nanoparticles inside of ovarian cancer cells by two-photon excited photoluminescence analyzed by fluorescence lifetime imaging (FLIM).
    Suarasan S; Licarete E; Astilean S; Craciun AM
    Colloids Surf B Biointerfaces; 2018 Jun; 166():135-143. PubMed ID: 29558704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal bioimaging using nanodiamond and gold hybrid nanoparticles.
    Lin YC; Perevedentseva E; Lin ZR; Chang CC; Chen HH; Yang SM; Lin MD; Karmenyan A; Speranza G; Minati L; Nebel C; Cheng CL
    Sci Rep; 2022 Mar; 12(1):5331. PubMed ID: 35351931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal fluorescence lifetime imaging and optical coherence tomography for longitudinal monitoring of tissue-engineered cartilage maturation in a preclinical implantation model.
    Zhou X; Haudenschild AK; Li C; Marcu L
    J Biomed Opt; 2023 Feb; 28(2):026003. PubMed ID: 36818585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences.
    De Giorgi V; Massi D; Sestini S; Cicchi R; Pavone FS; Lotti T
    J Eur Acad Dermatol Venereol; 2009 Mar; 23(3):314-6. PubMed ID: 19207664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon excitation and direct emission from S
    Kumari A; Gupta S
    J Biophotonics; 2019 Jan; 12(1):e201800086. PubMed ID: 30155994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed Assembly of Au Nanostar@Ag Satellite Nanostructures for SERS-Based Sensing of Hg
    Ellis MG; Pant U; Lou-Franco J; Logan N; Cao C
    ACS Appl Nano Mater; 2023 Jun; 6(12):10431-10440. PubMed ID: 37384129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.
    Eibl M; Karpf S; Weng D; Hakert H; Pfeiffer T; Kolb JP; Huber R
    Biomed Opt Express; 2017 Jul; 8(7):3132-3142. PubMed ID: 28717558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence.
    Shrestha S; Serafino MJ; Rico-Jimenez J; Park J; Chen X; Zhaorigetu S; Walton BL; Jo JA; Applegate BE
    Biomed Opt Express; 2016 Sep; 7(9):3184-3197. PubMed ID: 27699091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SyncRGB-FLIM: synchronous fluorescence imaging of red, green and blue dyes enabled by ultra-broadband few-cycle laser excitation and fluorescence lifetime detection.
    Maibohm C; Silva F; Figueiras E; Guerreiro PT; Brito M; Romero R; Crespo H; Nieder JB
    Biomed Opt Express; 2019 Apr; 10(4):1891-1904. PubMed ID: 31086710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing Gold Nanostars on 3D Hydrogel Surfaces.
    Vinnacombe-Willson GA; García-Astrain C; Troncoso-Afonso L; Wagner M; Langer J; González-Callejo P; Silvio DD; Liz-Marzán LM
    Chem Mater; 2024 May; 36(10):5192-5203. PubMed ID: 38828187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of dead time related distortions on live cell fluorescence lifetime imaging (FLIM) experiments.
    Turgeman L; Fixler D
    J Biophotonics; 2014 Jun; 7(6):442-52. PubMed ID: 23674214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct frequency domain fluorescence lifetime imaging using simultaneous ultraviolet and visible excitation.
    Serafino MJ; Jo JA
    Biomed Opt Express; 2023 Apr; 14(4):1608-1625. PubMed ID: 37078041
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.