These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33150056)

  • 1. High microphone signal-to-noise ratio enhances acoustic sampling of wildlife.
    Darras KFA; Deppe F; Fabian Y; Kartono AP; Angulo A; Kolbrek B; Mulyani YA; Prawiradilaga DM
    PeerJ; 2020; 8():e9955. PubMed ID: 33150056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembling cheap, high-performance microphones for recording terrestrial wildlife: the Sonitor system.
    Darras K; Kolbrek B; Knorr A; Meyer V; Zippert M; Wenzel A
    F1000Res; 2018; 7():1984. PubMed ID: 30687500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic localization of terrestrial wildlife: Current practices and future opportunities.
    Rhinehart TA; Chronister LM; Devlin T; Kitzes J
    Ecol Evol; 2020 Jul; 10(13):6794-6818. PubMed ID: 32724552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducibility of Voice Parameters: The Effect of Room Acoustics and Microphones.
    Bottalico P; Codino J; Cantor-Cutiva LC; Marks K; Nudelman CJ; Skeffington J; Shrivastav R; Jackson-Menaldi MC; Hunter EJ; Rubin AD
    J Voice; 2020 May; 34(3):320-334. PubMed ID: 30471944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous sound recording outperforms human observation for sampling birds: a systematic map and user guide.
    Darras K; Batáry P; Furnas BJ; Grass I; Mulyani YA; Tscharntke T
    Ecol Appl; 2019 Sep; 29(6):e01954. PubMed ID: 31206926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bird species detection by an observer and an autonomous sound recorder in two different environments: Forest and farmland.
    Kułaga K; Budka M
    PLoS One; 2019; 14(2):e0211970. PubMed ID: 30730984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Microphone Configuration and Sound Source Location on Speech Recognition for Adult Cochlear Implant Users with Current-Generation Sound Processors.
    Dwyer RT; Roberts J; Gifford RH
    J Am Acad Audiol; 2020 Sep; 31(8):578-589. PubMed ID: 32340055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise Reduction Combining a General Microphone and a Throat Microphone.
    Kawaguchi J; Matsumoto M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.
    Chung K; McKibben N
    J Am Acad Audiol; 2011 Oct; 22(9):586-600. PubMed ID: 22192604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-acoustic tracking and localization using heterogeneous, scalable microphone arrays.
    Verreycken E; Simon R; Quirk-Royal B; Daems W; Barber J; Steckel J
    Commun Biol; 2021 Nov; 4(1):1275. PubMed ID: 34759372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency soundfield microphone for the analysis of bat biosonar.
    Lee H; Roan MJ; Ming C; Simmons JA; Wang R; Müller R
    J Acoust Soc Am; 2019 Dec; 146(6):4525. PubMed ID: 31893689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Cochlear Implant Performance in the Wind Through Spectral Masking Release: A Multi-microphone and Multichannel Strategy.
    Chung K
    Ear Hear; 2020; 41(2):420-432. PubMed ID: 31425361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An annotated set of audio recordings of Eastern North American birds containing frequency, time, and species information.
    Chronister LM; Rhinehart TA; Place A; Kitzes J
    Ecology; 2021 Jun; 102(6):e03329. PubMed ID: 33705568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech Understanding and Sound Source Localization by Cochlear Implant Listeners Using a Pinna-Effect Imitating Microphone and an Adaptive Beamformer.
    Dorman MF; Natale S; Loiselle L
    J Am Acad Audiol; 2018 Mar; 29(3):197-205. PubMed ID: 29488870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing individual variation in perceptual directional microphone benefit.
    Keidser G; Dillon H; Convery E; Mejia J
    J Am Acad Audiol; 2013; 24(10):955-68. PubMed ID: 24384081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of nonstandard noise dosimeter microphone positions.
    Byrne DC; Reeves ER
    J Occup Environ Hyg; 2008 Mar; 5(3):197-209. PubMed ID: 18213533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory Survey of Endangered Eurasian Bittern Using Microphone Arrays and Robot Audition.
    Matsubayashi S; Nakadai K; Suzuki R; Ura T; Hasebe M; Okuno HG
    Front Robot AI; 2022; 9():854572. PubMed ID: 35462782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise in miniature microphones.
    Thompson SC; LoPresti JL; Ring EM; Nepomuceno HG; Beard JJ; Ballad WJ; Carlson EV
    J Acoust Soc Am; 2002 Feb; 111(2):861-6. PubMed ID: 11863188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic indices as proxies for bird species richness in an urban green space in Metro Manila.
    Diaz SDU; Gan JL; Tapang GA
    PLoS One; 2023; 18(7):e0289001. PubMed ID: 37506131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.