BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33150620)

  • 21. Energy optimization in gold nanoparticle enhanced radiation therapy.
    Sung W; Schuemann J
    Phys Med Biol; 2018 Jun; 63(13):135001. PubMed ID: 29873303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement.
    Cho J; Gonzalez-Lepera C; Manohar N; Kerr M; Krishnan S; Cho SH
    Phys Med Biol; 2016 Mar; 61(6):2562-81. PubMed ID: 26952844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron track structure simulations in a gold nanoparticle using Geant4-DNA.
    Sakata D; Kyriakou I; Tran HN; Bordage MC; Rosenfeld A; Ivanchenko V; Incerti S; Emfietzoglou D; Guatelli S
    Phys Med; 2019 Jul; 63():98-104. PubMed ID: 31221415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles.
    Hespeels F; Lucas S; Tabarrant T; Scifoni E; Kraemer M; ChĂȘne G; Strivay D; Tran HN; Heuskin AC
    Phys Med Biol; 2019 Mar; 64(6):065014. PubMed ID: 30731439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield.
    Peukert D; Kempson I; Douglass M; Bezak E
    Med Phys; 2020 Feb; 47(2):651-661. PubMed ID: 31725910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement.
    Byrne HL; Gholami Y; Kuncic Z
    Phys Med Biol; 2017 Apr; 62(8):3097-3110. PubMed ID: 28225353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary Electrons in Gold Nanoparticle Clusters and Their Role in Therapeutic Ratio: The Outcome of a Monte Carlo Simulation Study.
    Akhdar H; Alanazi R; Alanazi N; Alodhayb A
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SU-E-T-10: Monte Carlo Study of the Dose Enhancement Factor (DEF) for Gold Nano-Particle (GNP) on the Cellular Level.
    Zhang M; Qin S; Haffty B; Yue N
    Med Phys; 2012 Jun; 39(6Part9):3704. PubMed ID: 28519059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studying Effects of Gold Nanoparticle on Dose Enhancement in Megavoltage Radiation.
    Khadem Abolfazli M; Mahdavi SR; Ataei G
    J Biomed Phys Eng; 2015 Dec; 5(4):185-90. PubMed ID: 26688797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of the radiosensitization effect of high-
    Melo-Bernal W; Chernov G; Barboza-Flores M; Chernov V
    Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 33915522
    [No Abstract]   [Full Text] [Related]  

  • 31. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement.
    Delorme R; Taupin F; Flaender M; Ravanat JL; Champion C; Agelou M; Elleaume H
    Med Phys; 2017 Nov; 44(11):5949-5960. PubMed ID: 28886212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation.
    Cai Z; Pignol JP; Chattopadhyay N; Kwon YL; Lechtman E; Reilly RM
    Med Phys; 2013 Nov; 40(11):114101. PubMed ID: 24320476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays.
    Xie WZ; Friedland W; Li WB; Li CY; Oeh U; Qiu R; Li JL; Hoeschen C
    Phys Med Biol; 2015 Aug; 60(16):6195-212. PubMed ID: 26226203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of dose point kernel rescaling methods for nanoscale dose estimation around gold nanoparticles using Geant4 Monte Carlo simulations.
    Jayarathna S; Manohar N; Ahmed MF; Krishnan S; Cho SH
    Sci Rep; 2019 Mar; 9(1):3583. PubMed ID: 30837578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microdosimetric-Kinetic Model for Radio-enhancement of Gold Nanoparticles: Comparison with LEM.
    Kim H; Sung W; Ye SJ
    Radiat Res; 2021 Mar; 195(3):293-300. PubMed ID: 33400779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons.
    Zheng Y; Sanche L
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold Nanoparticle Enhanced Proton Therapy: Monte Carlo Modeling of Reactive Species' Distributions Around a Gold Nanoparticle and the Effects of Nanoparticle Proximity and Clustering.
    Peukert D; Kempson I; Douglass M; Bezak E
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31480532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 2: A treatment planning study.
    Strigari L; Ferrero V; VisonĂ  G; Dalmasso F; Gobbato A; Cerello P; Visentin S; Attili A
    Med Phys; 2017 May; 44(5):1993-2001. PubMed ID: 28236658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique.
    Kakade NR; Sharma SD
    J Cancer Res Ther; 2015; 11(1):94-7. PubMed ID: 25879344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AN ALGORITHM TO DETERMINE THE NANODOSIMETRIC IMPACT OF GOLD NANOPARTICLES ON CELL MODELS.
    Dressel T; Bug MU; Gargioni E; Rabus H
    Radiat Prot Dosimetry; 2019 May; 183(1-2):55-59. PubMed ID: 30535169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.