These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 33150628)

  • 1. Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO
    Ren X; Zhang X; Shadike Z; Zou L; Jia H; Cao X; Engelhard MH; Matthews BE; Wang C; Arey BW; Yang XQ; Liu J; Zhang JG; Xu W
    Adv Mater; 2020 Dec; 32(49):e2004898. PubMed ID: 33150628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eutectogel Electrolyte Constructs Robust Interfaces for High-Voltage Safe Lithium Metal Battery.
    Wu W; Li D; Gao C; Wu H; Bo Y; Zhang J; Ci L; Zhang J
    Adv Sci (Weinh); 2024 Jun; 11(23):e2310136. PubMed ID: 38639396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing Highly Li
    Bizuneh GG; Zhu C; Huang J; Wang H; Qi S; Wang Z; Wu D; Ma J
    Small Methods; 2023 Sep; 7(9):e2300079. PubMed ID: 37256271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Highly-Fluorinated Lithium Borate Main Salt Empowering Stable Lithium Metal Batteries.
    Chen G; Qiao L; Xu G; Li L; Li J; Li L; Liu X; Cui Z; Zhang S; Cheng S; Han C; Wang S; Zhou X; Cui G
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202400797. PubMed ID: 38477225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Formation of a LiF-Carbon Layer as an Artificial Cathodic Electrolyte Interphase through Encapsulation of a Cathode with Carbon Monofluoride.
    Lim JH; Myung Y; Yang M; Lee JW
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31741-31748. PubMed ID: 34185502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operation of Layered LiCoO
    Adamo JB; Su L; Manthiram A
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15458-15466. PubMed ID: 36921102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte.
    Sun H; Zhu G; Zhu Y; Lin MC; Chen H; Li YY; Hung WH; Zhou B; Wang X; Bai Y; Gu M; Huang CL; Tai HC; Xu X; Angell M; Shyue JJ; Dai H
    Adv Mater; 2020 Jul; 32(26):e2001741. PubMed ID: 32449260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Electrochemical Performances of Rechargeable Lithium-Ion Batteries via Cathode Interfacial Engineering.
    Kum LW; Gogia A; Vallo N; Singh DK; Kumar J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4100-4110. PubMed ID: 35015517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing compatible interface between Li
    Dong Y; Su P; He G; Zhao H; Bai Y
    Nanoscale; 2021 Apr; 13(16):7822-7830. PubMed ID: 33876165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing LiF/Li
    Hu X; Li Y; Liu J; Wang Z; Bai Y; Ma J
    Sci Bull (Beijing); 2023 Jun; 68(12):1295-1305. PubMed ID: 37246033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-voltage lithium-metal batteries enabled by ethylene glycol bis(propionitrile) ether-LiNO
    Li S; Huang K; Wu L; Xiao D; Long J; Wang C; Dou H; Chen P; Zhang X
    Chem Sci; 2023 Oct; 14(39):10786-10794. PubMed ID: 37829038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically and Thermally Stable Cathode Electrolyte Interphase Enables High-temperature, High-voltage Li||LiCoO
    Wu D; Zhu C; Wang H; Huang J; Jiang G; Yang Y; Yang G; Tang D; Ma J
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315608. PubMed ID: 38083796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable Harsh-Temperature Lithium Metal Batteries Enabled by Tailoring Solvation Structure in Ether Electrolytes.
    Liu Y; Lin Y; Yang Z; Lin C; Zhang X; Chen S; Hu G; Sa B; Chen Y; Zhang Y
    ACS Nano; 2023 Oct; 17(20):19625-19639. PubMed ID: 37819135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Stable 4.6 V LiCoO
    Fan T; Wang Y; Harika VK; Nimkar A; Wang K; Liu X; Wang M; Xu L; Elias Y; Sclar H; Chae MS; Min Y; Lu Y; Shpigel N; Aurbach D
    Adv Sci (Weinh); 2022 Nov; 9(33):e2202627. PubMed ID: 36253118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. B-/Si-containing electrolyte additive efficiently establish a stable interface for high-voltage LiCoO
    Lin X; Zeng F; Lin J; Zhang W; Zhou X; Quan L; Yang S; He J; Xing L; Li W
    J Colloid Interface Sci; 2023 Jul; 642():292-303. PubMed ID: 37004263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface Re-Engineering of Li
    Zhang Z; Chen S; Yang J; Wang J; Yao L; Yao X; Cui P; Xu X
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2556-2565. PubMed ID: 29278487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable Operation of Lithium Metal Batteries with Aggressive Cathode Chemistries at 4.9 V.
    Piao Z; Ren HR; Lu G; Jia K; Tan J; Wu X; Zhuang Z; Han Z; Li C; Gao R; Tao X; Zhou G; Cheng HM
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202300966. PubMed ID: 36788164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving Uniform Li Deposition and Suppressed Electrolyte Flammability in Li-Metal Batteries via Designing Localized High-Concentration Electrolytes.
    Wang X; Huang H; Zhang H; Dong Q; Zhang W; Gao M; Li J; Chen B; Guo H; Han X
    Small; 2024 May; ():e2401100. PubMed ID: 38721947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale-engineered LiCoO
    Jayasree SS; Nair S; Santhanagopalan D
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate-Rich Interface for a Highly Stable and Safe 4.6 V LiCoO
    Yang C; Liao X; Zhou X; Sun C; Qu R; Han J; Zhao Y; Wang L; You Y; Lu J
    Adv Mater; 2023 Apr; 35(14):e2210966. PubMed ID: 36649735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.