BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 33150674)

  • 1. Acute kidney injury associated with COVID-19-Cumulative evidence and rationale supporting against direct kidney injury (infection).
    Parmar MS
    Nephrology (Carlton); 2021 Mar; 26(3):239-247. PubMed ID: 33150674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell RNA sequencing analysis of human kidney reveals the presence of ACE2 receptor: A potential pathway of COVID-19 infection.
    He Q; Mok TN; Yun L; He C; Li J; Pan J
    Mol Genet Genomic Med; 2020 Oct; 8(10):e1442. PubMed ID: 32744436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection.
    Zhou L; Xu Z; Castiglione GM; Soiberman US; Eberhart CG; Duh EJ
    Ocul Surf; 2020 Oct; 18(4):537-544. PubMed ID: 32544566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-TNF-α agents Modulate SARS-CoV-2 Receptors and Increase the Risk of Infection Through Notch-1 Signaling.
    Keewan E; Beg S; Naser SA
    Front Immunol; 2021; 12():641295. PubMed ID: 34025650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kidney ACE2 expression: Implications for chronic kidney disease.
    Maksimowski N; Williams VR; Scholey JW
    PLoS One; 2020; 15(10):e0241534. PubMed ID: 33125431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Common Medications on the Expression of SARS-CoV-2 Entry Receptors in Kidney Tissue.
    Saheb Sharif-Askari N; Saheb Sharif-Askari F; Alabed M; Tayoun AA; Loney T; Uddin M; Senok A; Al Heialy S; Hamoudi R; Kashour T; Alsheikh-Ali A; Hamid Q; Halwani R
    Clin Transl Sci; 2020 Nov; 13(6):1048-1054. PubMed ID: 32799423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors.
    Rangel HR; Ortega JT; Maksoud S; Pujol FH; Serrano ML
    Virus Res; 2020 Nov; 289():198154. PubMed ID: 32918944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obesity alters Ace2 and Tmprss2 expression in lung, trachea, and esophagus in a sex-dependent manner: Implications for COVID-19.
    Sarver DC; Wong GW
    Biochem Biophys Res Commun; 2021 Jan; 538():92-96. PubMed ID: 33168188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can cilia provide an entry gateway for SARS-CoV-2 to human ciliated cells?
    Buqaileh R; Saternos H; Ley S; Aranda A; Forero K; AbouAlaiwi WA
    Physiol Genomics; 2021 Jun; 53(6):249-258. PubMed ID: 33855870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human mesenchymal stromal cells do not express ACE2 and TMPRSS2 and are not permissive to SARS-CoV-2 infection.
    Avanzini MA; Mura M; Percivalle E; Bastaroli F; Croce S; Valsecchi C; Lenta E; Nykjaer G; Cassaniti I; Bagnarino J; Baldanti F; Zecca M; Comoli P; Gnecchi M
    Stem Cells Transl Med; 2021 Apr; 10(4):636-642. PubMed ID: 33188579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of two potential novel SARS-CoV-2 entries, TMPRSS2 and IFITM3, in healthy individuals and cancer patients.
    Dai YJ; Zhang WN; Wang WD; He SY; Liang CC; Wang DW
    Int J Biol Sci; 2020; 16(15):3028-3036. PubMed ID: 33061814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene of the month:
    Thunders M; Delahunt B
    J Clin Pathol; 2020 Dec; 73(12):773-776. PubMed ID: 32873700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting TMPRSS2 in SARS-CoV-2 Infection.
    Baughn LB; Sharma N; Elhaik E; Sekulic A; Bryce AH; Fonseca R
    Mayo Clin Proc; 2020 Sep; 95(9):1989-1999. PubMed ID: 32861340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covid-19 and kidney injury: Pathophysiology and molecular mechanisms.
    Ahmadian E; Hosseiniyan Khatibi SM; Razi Soofiyani S; Abediazar S; Shoja MM; Ardalan M; Zununi Vahed S
    Rev Med Virol; 2021 May; 31(3):e2176. PubMed ID: 33022818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea.
    Ma D; Chen CB; Jhanji V; Xu C; Yuan XL; Liang JJ; Huang Y; Cen LP; Ng TK
    Eye (Lond); 2020 Jul; 34(7):1212-1219. PubMed ID: 32382146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible kidney-lung cross-talk in COVID-19: in silico modeling of SARS-CoV-2 infection.
    Grigoryev DN; Rabb H
    BMC Nephrol; 2022 Feb; 23(1):57. PubMed ID: 35123426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart.
    Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z
    Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute kidney injury due to COVID-19 and the circadian rhythm.
    Mercan M; Şehirli AÖ; Chukwunyere U; Abacıoğlu N
    Med Hypotheses; 2021 Jan; 146():110463. PubMed ID: 33387941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Androgens, the kidney, and COVID-19: an opportunity for translational research.
    Yanes Cardozo LL; Rezq S; Pruett JE; Romero DG
    Am J Physiol Renal Physiol; 2021 Feb; 320(2):F243-F248. PubMed ID: 33464168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting ACE2 as a potential prophylactic strategy against COVID-19-induced exacerbation of chronic kidney disease.
    Kazama I
    Inflamm Res; 2022 Nov; 71(10-11):1123-1126. PubMed ID: 35871404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.