These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 33151054)
1. Excitation of Surface Plasmon Resonance on Multiwalled Carbon Nanotube Metasurfaces for Pesticide Sensors. Wang Y; Cui Z; Zhang X; Zhang X; Zhu Y; Chen S; Hu H ACS Appl Mater Interfaces; 2020 Nov; 12(46):52082-52088. PubMed ID: 33151054 [TBL] [Abstract][Full Text] [Related]
2. Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface. Wang Y; Cui Z; Zhu D; Zhang X; Qian L Opt Express; 2018 Jun; 26(12):15343-15352. PubMed ID: 30114783 [TBL] [Abstract][Full Text] [Related]
3. Advances in terahertz metasurface graphene for biosensing and application. Bi H; Yang M; You R Discov Nano; 2023 Dec; 18(1):63. PubMed ID: 37091985 [TBL] [Abstract][Full Text] [Related]
4. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface. Li Q; Cong L; Singh R; Xu N; Cao W; Zhang X; Tian Z; Du L; Han J; Zhang W Nanoscale; 2016 Oct; 8(39):17278-17284. PubMed ID: 27714077 [TBL] [Abstract][Full Text] [Related]
5. Observation of terahertz plasmon and plasmon-polariton splitting in a grating-coupled AlGaN/GaN heterostructure. Yu Y; Zheng Z; Qin H; Sun J; Huang Y; Li X; Zhang Z; Wu D; Cai Y; Zhang B; Popov VV Opt Express; 2018 Nov; 26(24):31794-31807. PubMed ID: 30650759 [TBL] [Abstract][Full Text] [Related]
6. Transmission and plasmonic resonances on quasicrystal metasurfaces. Yang Q; Gu J; Xu Y; Li Y; Zhang X; Tian Z; Ouyang C; Han J; Zhang W Opt Express; 2017 Oct; 25(20):24173-24182. PubMed ID: 29041363 [TBL] [Abstract][Full Text] [Related]
7. [Study on terahertz spectra of multi-walled carbon nanotubes]. Su TF; Yu B; Han PY; Li YL; Li W; Zhao GZ; Gong CR Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3154-7. PubMed ID: 20102008 [TBL] [Abstract][Full Text] [Related]
8. Terahertz Dispersion Characteristics of Super-aligned Multi-walled Carbon Nanotubes and Enhanced Transmission through Subwavelength Apertures. Wang Y; Duan G; Zhang L; Ma L; Zhao X; Zhang X Sci Rep; 2018 Feb; 8(1):2087. PubMed ID: 29391417 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range. Zhong Y; Du L; Liu Q; Zhu L; Meng K; Zou Y; Zhang B RSC Adv; 2020 Sep; 10(55):33018-33025. PubMed ID: 35515049 [TBL] [Abstract][Full Text] [Related]
10. Multiband terahertz absorber and selective sensing performance. Wang Y; Cui Z; Zhu D; Wang X; Chen S; Nie P Opt Express; 2019 May; 27(10):14133-14143. PubMed ID: 31163866 [TBL] [Abstract][Full Text] [Related]
11. Electromagnetically induced transparency based on a carbon nanotube film terahertz metasurface. Zhou T; Chen S; Zhang X; Zhang X; Hu H; Wang Y Opt Express; 2022 Apr; 30(9):15436-15445. PubMed ID: 35473263 [TBL] [Abstract][Full Text] [Related]
12. Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes. Koo JH; Jeong S; Shim HJ; Son D; Kim J; Kim DC; Choi S; Hong JI; Kim DH ACS Nano; 2017 Oct; 11(10):10032-10041. PubMed ID: 28837773 [TBL] [Abstract][Full Text] [Related]
13. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
14. Hybrid resonant cavities: A route towards phase engineered THz metasurfaces. Kaur S; Karmakar S; Jana A; Rane S; Varshney RK; Roy Chowdhury D iScience; 2022 Apr; 25(4):104024. PubMed ID: 35310941 [TBL] [Abstract][Full Text] [Related]
15. Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing. Cerjan B; Gerislioglu B; Link S; Nordlander P; Halas NJ; Griep MH Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35732108 [TBL] [Abstract][Full Text] [Related]
16. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Lou J; Jiao Y; Yang R; Huang Y; Xu X; Zhang L; Ma Z; Yu Y; Peng W; Yuan Y; Zhong Y; Li S; Yan Y; Zhang F; Liang J; Du X; Chang C; Qiu CW Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2209218119. PubMed ID: 36252031 [TBL] [Abstract][Full Text] [Related]
17. Carbon Nanotubes as Fluorescent Labels for Surface Plasmon Resonance-Assisted Fluoroimmunoassay. Ashiba H; Iizumi Y; Okazaki T; Wang X; Fujimaki M Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29112158 [TBL] [Abstract][Full Text] [Related]
18. Ultrahigh-Sensitivity Molecular Sensing with Carbon Nanotube Terahertz Metamaterials. Wang R; Xu W; Chen D; Zhou R; Wang Q; Gao W; Kono J; Xie L; Ying Y ACS Appl Mater Interfaces; 2020 Sep; 12(36):40629-40634. PubMed ID: 32805801 [TBL] [Abstract][Full Text] [Related]
19. Dual-Wavelength Terahertz Metasurfaces with Independent Phase and Amplitude Control at Each Wavelength. Ding J; Xu N; Ren H; Lin Y; Zhang W; Zhang H Sci Rep; 2016 Sep; 6():34020. PubMed ID: 27659800 [TBL] [Abstract][Full Text] [Related]
20. Carbon-Based Nanomaterials for Plasmonic Sensors: A Review. Gupta BD; Pathak A; Semwal V Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]